Efficient algorithm for primitive ring statistics in topological networks

An efficient algorithm for finding primitive rings in a topological network has been developed. The calculation of complete ring statistics, with virtually no upper limit on ring size, becomes feasible for very large network systems. The computing time and memory usage are vastly reduced by utilizing the primitive ring properties and a four-point directing method. Various ring definitions are also discussed and analyzed in detail. Finally, examples are provided for analyzing alkali-rich regions in silicate glasses using ring statistics up to 33-membered primitive rings, obtained by this algorithm.

[1]  J. Kubicki,et al.  Four-membered rings in silica and aluminosilicate glasses , 1996 .

[2]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[3]  Nakano,et al.  Structure of rings in vitreous SiO2. , 1993, Physical review. B, Condensed matter.

[4]  B. Mihailova,et al.  Vibrational spectra of rings in silicate glasses , 1994 .

[5]  Elliott,et al.  Regular ring dynamics in AX2 tetrahedral glasses. , 1993, Physical review. B, Condensed matter.

[6]  H. C. Andersen,et al.  Molecular dynamics simulation of silica liquid and glass , 1992 .

[7]  Hans-Joachim Klein,et al.  Properties and efficient algorithmic determination of different classes of rings in finite and infinite polyhedral networks , 1991 .

[8]  F. L. Galeener Planar rings in glasses , 1982 .

[9]  Linn W. Hobbs,et al.  Network properties of crystalline polymorphs of silica , 1990 .

[10]  C. Simmons,et al.  Experimental Techniques of Glass Science , 1993 .

[11]  SHIRLEY V. KING,et al.  Ring Configurations in a Random Network Model of Vitreous Silica , 1967, Nature.

[12]  John R. Jones,et al.  Structural studies of high surface area silicas , 1992 .

[13]  Rino,et al.  Structural transformation in densified silica glass: A molecular-dynamics study. , 1994, Physical review. B, Condensed matter.

[14]  L. Guttman,et al.  Ring structure of the crystalline and amorphous forms of silicon dioxide , 1990 .

[15]  Bonnie Berger,et al.  Local topology of silica networks , 1998 .

[16]  Rahman,et al.  Simulation of the structure of amorphous silicon dioxide. , 1988, Physical review. B, Condensed matter.

[17]  F. L. Galeener,et al.  Planar rings in vitreous silica , 1982 .

[18]  A. Cormack,et al.  Local structures of MD-modeled vitreous silica and sodium silicate glasses , 2001 .

[19]  B. Vessal,et al.  Simulation studies of silicates and phosphates , 1994 .

[20]  S. Garofalini,et al.  Empirical three‐body potential for vitreous silica , 1988 .

[21]  L. Hobbs,et al.  Local structure of silica glasses , 1990 .

[22]  G. Greaves,et al.  Local structure, microstructure and glass properties , 1997 .

[23]  A. Varshneya Fundamentals of Inorganic Glasses , 1993 .

[24]  R. J. Bell,et al.  The structure of vitreous silica: Validity of the random network theory , 1972 .

[25]  G. N. Greaves,et al.  EXAFS and the structure of glass , 1985 .