Algorithmic Implications of the Graph Minor Theorem

[1]  Paul D. Seymour,et al.  Disjoint paths in graphs , 2006, Discret. Math..

[2]  Michael A. Langston,et al.  obstruction Set Isolation for the Gate Matrix Layout Problem , 1994, Discret. Appl. Math..

[3]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[4]  Robin Thomas,et al.  Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.

[5]  Paul D. Seymour,et al.  Disjoint Paths in a Planar Graph - A General Theorem , 1992, SIAM J. Discret. Math..

[6]  Robin Thomas,et al.  Quickly excluding a forest , 1991, J. Comb. Theory, Ser. B.

[7]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[8]  Paul D. Seymour,et al.  Monotonicity in Graph Searching , 1991, J. Algorithms.

[9]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[10]  Alexander Schrijver,et al.  Decomposition of graphs on surfaces and a homotopic circulation theorem , 1991, J. Comb. Theory B.

[11]  Daniel Bienstock,et al.  On embedding graphs in trees , 1990, J. Comb. Theory, Ser. B.

[12]  Paul D. Seymour,et al.  Graph minors. IV. Tree-width and well-quasi-ordering , 1990, J. Comb. Theory, Ser. B.

[13]  Paul D. Seymour,et al.  Graph minors. VIII. A kuratowski theorem for general surfaces , 1990, J. Comb. Theory, Ser. B.

[14]  Fillia Makedon,et al.  On minimizing width in linear layouts , 1989, Discret. Appl. Math..

[15]  Michael R. Fellows,et al.  On search decision and the efficiency of polynomial-time algorithms , 1989, STOC '89.

[16]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[17]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[18]  Christos H. Papadimitriou,et al.  Searching and Pebbling , 1986, Theor. Comput. Sci..

[19]  Paul D. Seymour,et al.  Graph minors. VI. Disjoint paths across a disc , 1986, J. Comb. Theory, Ser. B.

[20]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[21]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[22]  Charles E. Leiserson,et al.  Algorithms for routing and testing routability of planar VLSI layouts , 1985, STOC '85.

[23]  Arnold L. Rosenberg,et al.  Cost Trade-offs in Graph Embeddings, with Applications , 1983, JACM.

[24]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[25]  Dan Archdeacon,et al.  A Kuratowski theorem for the projective plane , 1981, J. Graph Theory.

[26]  Yossi Shiloach,et al.  A Polynomial Solution to the Undirected Two Paths Problem , 1980, JACM.

[27]  Henry H. Glover,et al.  103 Graphs that are irreducible for the projective plane , 1979, J. Comb. Theory, Ser. B.

[28]  W. Massey Algebraic Topology: An Introduction , 1977 .

[29]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[30]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[31]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[32]  J. Kruskal Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .

[33]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[34]  Michael A. Langston,et al.  Exact and Approximate Solutions for the Gate Matrix Layout Problem , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[35]  R. Cole,et al.  River Routing Every Which Way, but Loose (Extended Abstract) , 1984, FOCS.

[36]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[37]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .