CO2 and non-CO2 radiative forcings in climate projections for twenty-first century mitigation scenarios

Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle–climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse–response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.

[1]  Ian G. Enting,et al.  Future emissions and concentrations of carbon dioxide: Key ocean / atmosphere / land analyses , 1994 .

[2]  F. Joos,et al.  Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years , 2008, Proceedings of the National Academy of Sciences.

[3]  Bas Eickhout,et al.  Long-Term Multi-Gas Scenarios to Stabilise Radiative Forcing - Exploring Costs and Benefits Within an Integrated Assessment Framework , 2006 .

[4]  Michiel Schaeffer,et al.  Responsibility for Past and Future Global Warming: Uncertainties in Attributing Anthropogenic Climate Change , 2002 .

[5]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[6]  J. Palutikof,et al.  Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .

[7]  F. Joos,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming: Ocean carbon uptake , 2001 .

[8]  John P. Weyant,et al.  Overview of EMF-21: Multigas Mitigation and Climate Policy , 2006 .

[9]  F. Joos,et al.  Pulse response functions are cost-efficient tools to model the link between carbon emissions, atmospheric CO2 and global warming , 1996 .

[10]  T. Wigley,et al.  Interpretation of High Projections for Global-Mean Warming , 2001, Science.

[11]  Gian-Kasper Plattner,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming , 2001 .

[12]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[13]  Zoran Filipi,et al.  Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck , 2007 .

[14]  J. Edmonds,et al.  Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations , 2007 .

[15]  K. Riahi,et al.  The Role of Non-CO 2 Greenhouse Gases in Climate Change Mitigation : Long-term scenarios for the 21 st century , 2005 .

[16]  J. M. Reilly,et al.  Temperature increase of 21st century mitigation scenarios , 2008, Proceedings of the National Academy of Sciences.

[17]  A. Fischlin,et al.  Ecosystems, their properties, goods and services , 2007 .

[18]  D. Schimel,et al.  Atmospheric Chemistry and Greenhouse Gases , 1999 .

[19]  Wallace S. Broecker,et al.  The carbon cycle and atmospheric CO2 , 1986 .

[20]  N. Nakicenovic,et al.  Scenarios of long-term socio-economic and environmental development under climate stabilization , 2007 .

[21]  Edward R. Cook,et al.  Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability , 2002, Science.

[22]  J. Fuglestvedt,et al.  Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases , 2005 .

[23]  Toshihiko Masui,et al.  Multi-gas Mitigation Analysis on Stabilization Scenarios Using Aim Global Model , 2006 .

[24]  Julia C. Hargreaves,et al.  Long-term climate commitments projected with climate-carbon cycle models , 2008 .

[25]  W Ogana,et al.  Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2001 .

[26]  R. Pulwarty,et al.  Assessment of adaptation practices, options, constraints and capacity , 2007 .

[27]  Tom M. L. Wigley,et al.  Multi-Gas Forcing Stabilization with Minicam , 2006 .

[28]  F. Joos,et al.  Global warming and marine carbon cycle feedbacks on future atmospheric CO2 , 1999, Science.

[29]  Ian G. Enting,et al.  Comparison of formalisms for attributing responsibility for climate change: Non-linearities in the Brazilian Proposal approach , 2005 .

[30]  K. Riahi,et al.  The role of non-CO2 greenhouse gases in climate change mitigation: Long-term scenarios for the 21st century , 2006 .

[31]  L. Greene EHPnet: United Nations Framework Convention on Climate Change , 2000, Environmental Health Perspectives.

[32]  J. Edmonds,et al.  Economic and environmental choices in the stabilization of atmospheric CO2 concentrations , 1996, Nature.

[33]  R. Pielke,et al.  FORUM ON MODELING THE ATMOSPHERIC BOUNDARY LAYER , 2005 .

[34]  G. Myhre,et al.  New estimates of radiative forcing due to well mixed greenhouse gases , 1998 .

[35]  David I Stern,et al.  Global sulfur emissions from 1850 to 2000. , 2005, Chemosphere.

[36]  H. L. Miller,et al.  Global climate projections , 2007 .

[37]  Fortunat Joos,et al.  Stabilisation of atmospheric greenhouse gases: Physical, biological, and socio-economic implications , 1997 .

[38]  William J. Nuttall,et al.  Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices? , 2006 .

[39]  Sergey Paltsev,et al.  The Role of Non-CO2 GHGs in Climate Policy: Analysis Using the MIT IGSM , 2006 .

[40]  Michael E. Mann,et al.  Global surface temperatures over the past two millennia , 2003 .

[41]  John P. Weyant,et al.  Multi-gas scenarios to stabilize radiative forcing , 2006 .

[42]  E. Dlugokencky,et al.  Atmospheric chemistry and greenhouse gases , 2001 .

[43]  Jason Lowe,et al.  Analysing countries' contribution to climate change: scientific and policy-related choices , 2005 .

[44]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[45]  Corinne Le Quéré,et al.  An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake , 1996 .

[46]  Stephen Sitch,et al.  Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios , 2001 .

[47]  Alan S. Manne,et al.  An alternative approach to establishing trade-offs among greenhouse gases , 2001, Nature.

[48]  A. Waple,et al.  Climate Projections Based on Emissions Scenarios for Long-Lived and Short-Lived Radiatively Active Gases and Aerosols , 2008 .

[49]  M. Collins,et al.  Projections of future climate change , 2002 .

[50]  T. Stocker,et al.  Influence of the Thermohaline Circulation on Projected Sea Level Rise , 2000 .

[51]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[52]  K. Jiang,et al.  Multi-Gas Mitigation Analysis by IPAC , 2006 .

[53]  K. Trenberth,et al.  Observations: Surface and Atmospheric Climate Change , 2007 .