The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis.

We discuss in this review the regulation of synthesis and action of FtsZ, its structure in relation to tubulin and microtubules, and the mechanism of polymerization and disassembly (contraction) of FtsZ rings from a specific nucleation site (NS) at mid cell. These topics are considered in the light of recent immunocytological studies, high resolution structures of some division proteins and results indicating how bacteria may measure their mid cell point.

[1]  W. Margolin,et al.  Genetic and Functional Analyses of the Conserved C-Terminal Core Domain of Escherichia coli FtsZ , 1999, Journal of bacteriology.

[2]  H. Erickson,et al.  FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima--quantitation, GTP hydrolysis, and assembly. , 1998, Cell motility and the cytoskeleton.

[3]  G. Walker,et al.  Mutagenesis and more: umuDC and the Escherichia coli SOS response. , 1998, Genetics.

[4]  J. Lutkenhaus,et al.  The FtsZ protein of Bacillus subtilis is localized at the division site and has GTPase activity that is dependent upon FtsZ concentration , 1993, Molecular microbiology.

[5]  V. Norris,et al.  Hypothesis: membrane domains and hyperstructures control bacterial division. , 2001, Biochimie.

[6]  J. Errington,et al.  The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division , 1997, Molecular microbiology.

[7]  T. Ogura,et al.  Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells , 1989, Journal of bacteriology.

[8]  C. Sirard,et al.  The Escherichia coli cell division mutation ftsM1 is in serU , 1989, Journal of bacteriology.

[9]  W. Margolin,et al.  FtsZ Dynamics during the Division Cycle of LiveEscherichia coli Cells , 1998, Journal of bacteriology.

[10]  W. Donachie,et al.  Transcription of essential cell division genes is linked to chromosome replication in Escherichia coli , 2001, Molecular microbiology.

[11]  E. Harry Coordinating DNA replication with cell division: lessons from outgrowing spores. , 2001, Biochimie.

[12]  C. Helmstetter,et al.  Relationship between ftsZ gene expression and chromosome replication in Escherichia coli , 1994, Journal of bacteriology.

[13]  W. Cook,et al.  Nucleoid-Independent Identification of Cell Division Sites in Escherichia coli , 1999, Journal of bacteriology.

[14]  P A de Boer,et al.  Dynamic localization cycle of the cell division regulator MinE in Escherichia coli , 2001, The EMBO journal.

[15]  W. Donachie,et al.  Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ , 1992, Journal of bacteriology.

[16]  S. Séror,et al.  Characterization of an Escherichia coli mutant, feeA, displaying resistance to the calmodulin inhibitor 48/80 and reduced expression of the rare tRNA3Leu , 1996, Molecular microbiology.

[17]  R. Reynolds,et al.  Slow Polymerization of Mycobacterium tuberculosis FtsZ , 2000, Journal of bacteriology.

[18]  T. Kuroiwa,et al.  Novel Filaments 5 nm in Diameter Constitute the Cytosolic Ring of the Plastid Division Apparatus , 2001, Plant Cell.

[19]  H. Niki,et al.  Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA-protein complexes in E. coli. , 1998, Molecular cell.

[20]  Y. Brun,et al.  Cell cycle and positional constraints on FtsZ localization and the initiation of cell division in Caulobacter crescentus , 2001, Molecular microbiology.

[21]  D. Mullin,et al.  The E. coli dnaY gene encodes an arginine transfer RNA , 1986, Cell.

[22]  Jan Löwe,et al.  Crystal structure of the cell division protein FtsA from Thermotoga maritima , 2000, The EMBO journal.

[23]  J. Sawitzke,et al.  An analysis of the factory model for chromosome replication and segregation in bacteria , 2001, Molecular microbiology.

[24]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[25]  K. Pearce,et al.  A conserved residue at the extreme C-terminus of FtsZ is critical for the FtsA-FtsZ interaction in Staphylococcus aureus. , 2000, Biochemical and biophysical research communications.

[26]  N Nanninga,et al.  Role of the nucleoid in the toporegulation of division. , 1990, Research in microbiology.

[27]  C. Thompson,et al.  GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  L. Rothfield,et al.  The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. D. de Boer,et al.  ZipA-Induced Bundling of FtsZ Polymers Mediated by an Interaction between C-Terminal Domains , 2000, Journal of bacteriology.

[30]  W. Donachie,et al.  Quantal Behavior of a Diffusible Factor Which Initiates Septum Formation at Potential Division Sites in Escherichia coli , 1974, Journal of bacteriology.

[31]  A. Campbell,et al.  An assessment of the role of intracellular free Ca2+ in E. coli. , 1999, Biochimie.

[32]  W. Margolin,et al.  FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization , 1999, Molecular microbiology.

[33]  M. Ehrenberg,et al.  Fusidic acid‐resistant EF‐G perturbs the accumulation of ppGpp , 2000, Molecular microbiology.

[34]  A single base change in the acceptor stem of tRNA(3Leu) confers resistance upon Escherichia coli to the calmodulin inhibitor, 48/80. , 1991, The EMBO journal.

[35]  S. Gottesman,et al.  Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Löwe,et al.  Crystal structure of the bacterial cell division inhibitor MinC , 2001, The EMBO journal.

[37]  A. Higashitani,et al.  A cell division inhibitor SulA of Escherichia coli directly interacts with FtsZ through GTP hydrolysis. , 1995, Biochemical and biophysical research communications.

[38]  P. D. de Boer,et al.  MinDE-Dependent Pole-to-Pole Oscillation of Division Inhibitor MinC in Escherichia coli , 1999, Journal of bacteriology.

[39]  S. Casaregola,et al.  A mutant cysteinyl‐tRNA synthetase affecting timing of chromosomal replication initiation in B. subtilis and conferring resistance to a protein kinase C inhibitor. , 1994, The EMBO journal.

[40]  L. Rothfield,et al.  A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. , 1991, The EMBO journal.

[41]  A. Ishihama,et al.  The ftsQ1p gearbox promoter of Escherichia coli is a major sigma S‐dependent promoter in the ddlB–ftsA region , 1998, Molecular microbiology.

[42]  R. Bernander,et al.  The Escherichia coli cell cycle: one cycle or multiple independent processes that are co‐ordinated? , 1991, Molecular microbiology.

[43]  K. Kobayashi,et al.  The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. , 2000, Microbiology.

[44]  S Inoué,et al.  1. EARLY HISTORY: THE DYNAMIC EQUILIBRIUM MODEL , 1995 .

[45]  L. Rothfield,et al.  Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery , 2000, Molecular microbiology.

[46]  J. Le Pecq,et al.  Relationship between cellular diadenosine 5',5'''-P1,P4-tetraphosphate level, cell density, cell growth stimulation and toxic stresses. , 1986, Experimental Cell Research.

[47]  S. Cooper,et al.  On the bacterial life sequence. , 1968, Cold Spring Harbor symposia on quantitative biology.

[48]  M. Vicente,et al.  Dependency of Escherichia coli cell‐division size, and independency of nucleoid segregation on the mode and level of ftsZ expression , 1996, Molecular microbiology.

[49]  Jones Nc,et al.  Chromosome replication, transcription and control of cell division in Escherichia coli. , 1973, Nature: New biology.

[50]  K. Nordström,et al.  Cell division in Escherichia coli minB mutants , 1992, Molecular microbiology.

[51]  I. Holland,et al.  Regulation of the synthesis of surface protein in the cell cycle of e. coli b/r , 1979, Cell.

[52]  L. Rothfield,et al.  A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli , 1989, Cell.

[53]  L. Rothfield,et al.  Bacterial Cell Division: The Cycle of the Ring , 1997, Cell.

[54]  K. Pearce,et al.  Self-activation of guanosine triphosphatase activity by oligomerization of the bacterial cell division protein FtsZ. , 1999, Biochemistry.

[55]  I. Holland,et al.  Role of the SulB (FtsZ) protein in division inhibition during the SOS response in Escherichia coli: FtsZ stabilizes the inhibitor SulA in maxicells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Lutkenhaus,et al.  Temperature shift experiments with an ftsZ84(Ts) strain reveal rapid dynamics of FtsZ localization and indicate that the Z ring is required throughout septation and cannot reoccupy division sites once constriction has initiated , 1997, Journal of bacteriology.

[57]  J. Lutkenhaus,et al.  FtsZ‐spirals and ‐arcs determine the shape of the invaginating septa in some mutants of Escherichia coli , 1996, Molecular microbiology.

[58]  P. D. de Boer,et al.  Recruitment of ZipA to the Septal Ring ofEscherichia coli Is Dependent on FtsZ and Independent of FtsA , 1999, Journal of bacteriology.

[59]  R. D'ari,et al.  Effect of suppressors of SOS-mediated filamentation on sfiA operon expression in Escherichia coli , 1983, Journal of bacteriology.

[60]  J A Theriot,et al.  The Polymerization Motor , 2000, Traffic.

[61]  A. Driessen,et al.  The polymerization mechanism of the bacterial cell division protein FtsZ , 2001, FEBS letters.

[62]  J. Possingham,et al.  Observations of microtubule-like structures within spinach plastids , 1984 .

[63]  J. Errington,et al.  Control of Cell Shape in Bacteria Helical, Actin-like Filaments in Bacillus subtilis , 2001, Cell.

[64]  Itzhak Fishov,et al.  Visualization of membrane domains in Escherichia coli , 1999, Molecular microbiology.

[65]  N. Nanninga,et al.  Rate and topography of peptidoglycan synthesis during cell division in Escherichia coli: concept of a leading edge , 1989, Journal of bacteriology.

[66]  H. Erickson,et al.  FtsZ, a prokaryotic homolog of tubulin? , 1995, Cell.

[67]  William Dowhan,et al.  Localization and Function of Early Cell Division Proteins in Filamentous Escherichia coli Cells Lacking Phosphatidylethanolamine , 1998, Journal of bacteriology.

[68]  M. Ohki,et al.  The E. coli divE mutation, which differentially inhibits synthesis of certain proteins, is in tRNASer1. , 1984, The EMBO journal.

[69]  J. Lutkenhaus,et al.  Overproduction of FtsZ induces minicell formation in E. coli , 1985, Cell.

[70]  J. Lutkenhaus FtsZ ring in bacterial cytokinesis , 1993, Molecular microbiology.

[71]  T. Katayama,et al.  CedA is a novel Escherichia coli protein that activates the cell division inhibited by chromosomal DNA over‐replication , 1997, Molecular microbiology.

[72]  H. Erickson,et al.  Polymerization of FtsZ, a Bacterial Homolog of Tubulin , 2001, The Journal of Biological Chemistry.

[73]  L. Amos,et al.  Tubulin‐like protofilaments in Ca2+‐induced FtsZ sheets , 1999, The EMBO journal.

[74]  I. Holland,et al.  Two pathways of division inhibition in UV-irradiated E. coli , 2004, Molecular and General Genetics MGG.

[75]  O. Benada,et al.  Isolation and characterization of dcw cluster from Streptomyces collinus producing kirromycin. , 2000, Biochemical and biophysical research communications.

[76]  L. Rothfield,et al.  The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. , 1991, The EMBO journal.

[77]  J. Errington,et al.  Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis , 2001, Molecular microbiology.

[78]  H. Inokuchi,et al.  Novel Temperature-Sensitive Mutants of Escherichia coli That Are Unable To Grow in the Absence of Wild-Type tRNA6Leu , 1998, Journal of bacteriology.

[79]  A. Nishimura The timing of cell division: Ap4A as a signal. , 1998, Trends in biochemical sciences.

[80]  Nanne Nanninga,et al.  Morphogenesis of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[81]  E. Harry,et al.  Mid‐cell Z ring assembly in the absence of entry into the elongation phase of the round of replication in bacteria: co‐ordinating chromosome replication with cell division , 2000, Molecular microbiology.

[82]  Mark W. Maciejewski,et al.  Structural basis for the topological specificity function of MinE , 2000, Nature Structural Biology.

[83]  F. Tétart,et al.  Regulation of the expression of the cell‐cycle gene ftsZ by DicF antisense RNA. Division does not require a fixed number of FtsZ molecules , 1992, Molecular microbiology.

[84]  W. Donachie,et al.  The cell cycle of Escherichia coli. , 1993, Annual review of microbiology.

[85]  H. Erickson The FtsZ protofilament and attachment of ZipA--structural constraints on the FtsZ power stroke. , 2001, Current opinion in cell biology.

[86]  L. Amos,et al.  Crystal structure of the bacterial cell-division protein FtsZ , 1998, Nature.

[87]  N. Nanninga,et al.  Timing of FtsZ Assembly in Escherichia coli , 1999, Journal of bacteriology.

[88]  D. Raychaudhuri,et al.  Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein , 1992, Nature.

[89]  J. Lutkenhaus,et al.  ftsZ is an essential cell division gene in Escherichia coli , 1991, Journal of bacteriology.

[90]  A. Campbell,et al.  Slow changes in cytosolic free Ca2+ in Escherichia coli highlight two putative influx mechanisms in response to changes in extracellular calcium. , 1999, Cell calcium.

[91]  I. Holland Genetic analysis of the E. coli division clock , 1987, Cell.

[92]  J. Lutkenhaus,et al.  Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[93]  P. Gómez-Puertas,et al.  Escherichia coli FtsZ polymers contain mostly GTP and have a high nucleotide turnover , 2001, Molecular microbiology.

[94]  K. Morikawa,et al.  Structural and functional studies of MinD ATPase: implications for the molecular recognition of the bacterial cell division apparatus , 2001, The EMBO journal.

[95]  J. Lutkenhaus,et al.  The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli , 1992, Journal of bacteriology.

[96]  R. Losick,et al.  Aberrant Cell Division and Random FtsZ Ring Positioning in Escherichia coli cpxA* Mutants , 1998, Journal of bacteriology.

[97]  J. Löwe,et al.  Crystal structure of the bacterial cell division regulator MinD , 2001, FEBS letters.

[98]  T. Baldwin,et al.  Control of cell division in Escherichia coli: regulation of transcription of ftsQA involves both rpoS and SdiA-mediated autoinduction. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Yuko Yamada,et al.  Diadenosine 5′,5′′′‐P1,P4‐tetraphosphate (Ap4A) controls the timing of cell division in Escherichia coli , 1997, Genes to cells : devoted to molecular & cellular mechanisms.

[100]  R. Losick,et al.  Use of immunofluorescence to visualize cell-specific gene expression during sporulation in Bacillus subtilis , 1995, Journal of bacteriology.

[101]  S. Rowland,et al.  Membrane Redistribution of the Escherichia coli MinD Protein Induced by MinE , 2000, Journal of bacteriology.

[102]  F. Képès,et al.  Intracellular 5',5'-dinucleoside polyphosphate levels remain constant during the Escherichia coli cell cycle , 1987, Journal of bacteriology.

[103]  E. Harry,et al.  Bacterial cell division: regulating Z‐ring formation , 2001, Molecular microbiology.

[104]  W. Donachie,et al.  Cell length, cell growth and cell division , 1976, Nature.

[105]  R. A. Gustafson,et al.  Regulation of bacterial cell division: temperature-sensitive mutants of Escherichia coli that are defective in septum formation , 1975, Journal of bacteriology.

[106]  J. Lutkenhaus,et al.  Interaction between FtsZ and inhibitors of cell division , 1996, Journal of bacteriology.

[107]  S. Séror,et al.  Resistance to trifluoroperazine, a calmodulin inhibitor, maps to the fabD locus in Escherichia coli , 1995, Molecular and General Genetics MGG.

[108]  C. Woldringh,et al.  Lack of S-Adenosylmethionine Results in a Cell Division Defect in Escherichia coli , 1998, Journal of bacteriology.

[109]  J. Lutkenhaus,et al.  Topological regulation of cell division in E. coli. spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. , 2001, Molecular cell.

[110]  N. Nanninga Cell division and peptidoglycan assembly in Eschenchia coli , 1991, Molecular microbiology.

[111]  G. Rivas,et al.  Magnesium-induced Linear Self-association of the FtsZ Bacterial Cell Division Protein Monomer , 2000, The Journal of Biological Chemistry.

[112]  J. Lutkenhaus,et al.  Escherichia coli Division Inhibitor MinCD Blocks Septation by Preventing Z-Ring Formation , 2001, Journal of bacteriology.

[113]  A. L. Koch,et al.  A model for statistics of the cell division process. , 1962, Journal of general microbiology.

[114]  H. Erickson,et al.  Site-specific mutations of FtsZ - effects on GTPase and in vitro assembly , 2001, BMC Microbiology.

[115]  J. Lutkenhaus,et al.  Guanine nucleotide-dependent assembly of FtsZ into filaments , 1994, Journal of bacteriology.

[116]  F. J. Trueba,et al.  On the precision and accuracy achieved by Escherichia coli cells at fission about their middle , 1982, Archives of Microbiology.

[117]  A. Grossman,et al.  Movement of replicating DNA through a stationary replisome. , 2000, Molecular cell.

[118]  Kenneth H. Downing,et al.  Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[119]  J. Lutkenhaus,et al.  Dynamic assembly of FtsZ regulated by GTP hydrolysis , 1998, The EMBO journal.

[120]  H. Erickson,et al.  Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[121]  J. Lutkenhaus,et al.  FtsZ ring: the eubacterial division apparatus conserved in archaebacteria , 1996, Molecular microbiology.

[122]  L. Rothfield,et al.  The essential bacterial cell-division protein FtsZ is a GTPase , 1992, Nature.

[123]  D. Raychaudhuri ZipA is a MAP–Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division , 1999, EMBO Journal.

[124]  I. Kurtser,et al.  Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[125]  G. McFadden,et al.  Mitochondrial FtsZ in a chromophyte alga. , 2000, Science.

[126]  C. Hale,et al.  Direct Binding of FtsZ to ZipA, an Essential Component of the Septal Ring Structure That Mediates Cell Division in E. coli , 1997, Cell.

[127]  L. Amos,et al.  Helical Tubes of FtsZ from Methanococcus jannaschii , 2000, Biological chemistry.

[128]  E. Bi,et al.  FtsZ ring formation in fts mutants , 1996, Journal of bacteriology.

[129]  D. Bramhill,et al.  Bacterial SOS Checkpoint Protein SulA Inhibits Polymerization of Purified FtsZ Cell Division Protein , 1998, Journal of bacteriology.

[130]  W. Margolin,et al.  Themes and variations in prokaryotic cell division. , 2000, FEMS microbiology reviews.

[131]  U. Jenal,et al.  Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control. , 2000, FEMS microbiology reviews.

[132]  William Dowhan,et al.  Visualization of Phospholipid Domains inEscherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10-N-Nonyl Acridine Orange , 2000, Journal of bacteriology.

[133]  R. D'ari,et al.  Novel mechanism of cell division inhibition associated with the SOS response in Escherichia coli , 1983, Journal of bacteriology.

[134]  J. Lutkenhaus,et al.  Two polypeptide products of the Escherichia coli cell division gene ftsW and a possible role for FtsW in FtsZ function , 1997, Journal of bacteriology.

[135]  M Aldea,et al.  Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. , 1993, The EMBO journal.

[136]  E. Bi,et al.  Isolation and characterization of ftsZ alleles that affect septal morphology , 1992, Journal of bacteriology.

[137]  P. D. de Boer,et al.  Genetic Analysis of the Escherichia coli FtsZ·ZipA Interaction in the Yeast Two-hybrid System , 2001, The Journal of Biological Chemistry.

[138]  H. Erickson,et al.  Straight and Curved Conformations of FtsZ Are Regulated by GTP Hydrolysis , 2000, Journal of bacteriology.

[139]  P. Matsumura,et al.  The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA , 1997, Journal of bacteriology.

[140]  B. Prüß,et al.  Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli , 1998, Archives of Microbiology.

[141]  J. Lutkenhaus,et al.  Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[142]  N. Nanninga,et al.  The intracellular concentration of cyclic adenosine 3′,5′-monophosphate is constant throughout the cell cycle of Escherichia coli , 1984 .

[143]  J. Bouché,et al.  Minicell-forming mutants of Escherichia coli: suppression of both DicB- and MinD-dependent division inhibition by inactivation of the minC gene product , 1990, Journal of bacteriology.

[144]  J. Lutkenhaus,et al.  Analysis of FtsZ Assembly by Light Scattering and Determination of the Role of Divalent Metal Cations , 1999, Journal of bacteriology.

[145]  G. Björk,et al.  Mutation in the structural gene for release factor 1 (RF-1) of Salmonella typhimurium inhibits cell division , 1996, Journal of bacteriology.

[146]  J. Lutkenhaus,et al.  The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[147]  O. Maaløe,et al.  Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. , 1958, Journal of general microbiology.

[148]  M. Aldea,et al.  Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. , 1990, The EMBO journal.

[149]  U. Schwarz,et al.  Regulation of polar cap formation in the life cycle of Escherichia coli. , 1972, Journal of supramolecular structure.

[150]  Fabrice Carballès,et al.  Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two‐component system rcsC–rcsB , 1999, Molecular microbiology.

[151]  P. Beech,et al.  FtsZ and organelle division in Protists. , 2000, Protist.

[152]  P. D. de Boer,et al.  Proper placement of the Escherichia coli division site requires two functions that are associated with different domains of the MinE protein. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[153]  W. Margolin,et al.  Ca2+‐mediated GTP‐dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro , 1997, The EMBO journal.

[154]  P. Freestone,et al.  Effects of Calcium and Calcium Chelators on Growth and Morphology of Escherichia coli L-Form NC-7 , 2000, Journal of bacteriology.

[155]  N Nanninga,et al.  Size variations and correlation of different cell cycle events in slow-growing Escherichia coli , 1978, Journal of bacteriology.

[156]  R. D'ari,et al.  Metabolic Alarms and Cell Division inEscherichia coli , 1999, Journal of bacteriology.

[157]  J. Errington,et al.  Selection of the midcell division site in Bacillus subtilis through MinD‐dependent polar localization and activation of MinC , 1999, Molecular microbiology.

[158]  Y. Brun,et al.  Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. , 1998, Genes & development.

[159]  V. Norris Phospholipid domains determine the spatial organization of the Escherichia coli cell cycle: the membrane tectonics model. , 1992, Journal of theoretical biology.

[160]  H. Erickson,et al.  Atomic structures of tubulin and FtsZ. , 1998, Trends in cell biology.

[161]  Jan Löwe,et al.  Prokaryotic origin of the actin cytoskeleton , 2001, Nature.