Neuronal–glial communication perturbations in murine SOD1G93A spinal cord

[1]  B. Barres,et al.  Neurotoxic reactive astrocytes induce cell death via saturated lipids , 2021, Nature.

[2]  Alireza Kheirollah,et al.  Amyloid beta increases ABCA1 and HMGCR protein expression, and cholesterol synthesis and accumulation in mice neurons and astrocytes. , 2021, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[3]  H. Phatnani,et al.  Non-cell-autonomous pathogenic mechanisms in amyotrophic lateral sclerosis , 2021, Trends in Neurosciences.

[4]  M. Turner,et al.  Non-neuronal cells in amyotrophic lateral sclerosis — from pathogenesis to biomarkers , 2021, Nature Reviews Neurology.

[5]  Z. Modrušan,et al.  Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. , 2021, Cell reports.

[6]  M. Fumagalli,et al.  Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives , 2021, Cells.

[7]  C. Langefeld,et al.  A practical solution to pseudoreplication bias in single-cell studies , 2021, Nature Communications.

[8]  Hui Zheng,et al.  Clusterin secreted from astrocyte promotes excitatory synaptic transmission and ameliorates Alzheimer’s disease neuropathology , 2021, Molecular neurodegeneration.

[9]  D. Lancet,et al.  Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene , 2020, Cell reports.

[10]  Helena L. Crowell,et al.  muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data , 2020, Nature Communications.

[11]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[12]  Gary L. Pattee,et al.  Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic Lateral Sclerosis. , 2020, The New England journal of medicine.

[13]  B. Barres,et al.  Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model , 2020, Nature Communications.

[14]  Yvan Saeys,et al.  A scalable SCENIC workflow for single-cell gene regulatory network analysis , 2020, Nature Protocols.

[15]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[16]  Y. Saeys,et al.  NicheNet: modeling intercellular communication by linking ligands to target genes , 2019, Nature Methods.

[17]  Maxim N. Artyomov,et al.  Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and - independent cellular responses in Alzheimer’s disease , 2019, Nature Medicine.

[18]  F. C. Bennett,et al.  INGE GRUNDKE-IQBAL AWARD FOR ALZHEIMER’S RESEARCH: NEUROTOXIC REACTIVE ASTROCYTES ARE INDUCED BY ACTIVATED MICROGLIA , 2019, Alzheimer's & Dementia.

[19]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[20]  L. Dupuis,et al.  The dark side of HDAC inhibition in ALS , 2019, EBioMedicine.

[21]  Trygve E Bakken,et al.  Single-nucleus and single-cell transcriptomes compared in matched cortical cell types , 2018, PloS one.

[22]  Haojia Wu,et al.  Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis. , 2018, Journal of the American Society of Nephrology : JASN.

[23]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[24]  Bo Li,et al.  Nuclei multiplexing with barcoded antibodies for single-nucleus genomics , 2018, Nature Communications.

[25]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[26]  A. Butte,et al.  Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage , 2018, Nature Immunology.

[27]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[28]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[29]  Minoru Kanehisa,et al.  New approach for understanding genome variations in KEGG , 2018, Nucleic Acids Res..

[30]  M. Mayford,et al.  A Functionally Defined In Vivo Astrocyte Population Identified by c-Fos Activation in a Mouse Model of Multiple Sclerosis Modulated by S1P Signaling: Immediate-Early Astrocytes (ieAstrocytes) , 2018, eNeuro.

[31]  S. Wingett,et al.  FastQ Screen: A tool for multi-genome mapping and quality control , 2018, F1000Research.

[32]  Catherine E. Braine,et al.  Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis , 2018, Science.

[33]  T. Boeckers,et al.  NF‐κB activation in astrocytes drives a stage‐specific beneficial neuroimmunological response in ALS , 2018, The EMBO journal.

[34]  Param Priya Singh,et al.  Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses , 2018, bioRxiv.

[35]  Li Li,et al.  Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior , 2018, Cell reports.

[36]  D. Hoffman,et al.  FRMPD4 mutations cause X-linked intellectual disability and disrupt dendritic spine morphogenesis , 2018, Human molecular genetics.

[37]  Jeffrey J. Gray,et al.  Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors , 2018, Nature Communications.

[38]  Markus Glatzel,et al.  The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. , 2017, Immunity.

[39]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[40]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[41]  S. Barnett,et al.  The multifaceted role of astrocytes in regulating myelination , 2016, Experimental Neurology.

[42]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[43]  Jianrong Li,et al.  Activation of oligodendroglial Stat3 is required for efficient remyelination , 2016, Neurobiology of Disease.

[44]  V. Perry,et al.  CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves , 2016, Scientific Reports.

[45]  Melissa J. Green,et al.  Possibility of a sex-specific role for a genetic variant in FRMPD4 in schizophrenia, but not cognitive function , 2016, Neuroreport.

[46]  L. Ferraiuolo,et al.  Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS , 2015, Proceedings of the National Academy of Sciences.

[47]  Martin T. Halicek,et al.  Characterization of the Contribution of Genetic Background and Gender to Disease Progression in the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis: A Meta-Analysis , 2015, Journal of neuromuscular diseases.

[48]  G. Sobue,et al.  Astrocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. , 2015, Cell reports.

[49]  Tessandra H Stewart,et al.  α-Synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation , 2015, Proceedings of the National Academy of Sciences.

[50]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[51]  Roland Eils,et al.  circlize implements and enhances circular visualization in R , 2014, Bioinform..

[52]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[53]  P. Popovich,et al.  Microglia Induce Motor Neuron Death via the Classical NF-κB Pathway in Amyotrophic Lateral Sclerosis , 2014, Neuron.

[54]  A. Chiò,et al.  State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.

[55]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[56]  Y. Parman,et al.  Genome-Wide Copy Number Variation in Sporadic Amyotrophic Lateral Sclerosis in the Turkish Population: Deletion of EPHA3 Is a Possible Protective Factor , 2013, PloS one.

[57]  R. Myers,et al.  A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. , 2013, Cell reports.

[58]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[59]  W. Shi,et al.  The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote , 2013, Nucleic acids research.

[60]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[61]  A. Cardona,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[62]  G. Smyth,et al.  Camera: a competitive gene set test accounting for inter-gene correlation , 2012, Nucleic acids research.

[63]  P. Worley,et al.  Preso1 dynamically regulates group I metabotropic glutamate receptors , 2012, Nature Neuroscience.

[64]  J. Mendell,et al.  Astrocytes from Familial and Sporadic ALS Patients are Toxic to Motor Neurons , 2011, Nature Biotechnology.

[65]  G. Rouleau,et al.  Resequencing of 29 candidate genes in patients with familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[66]  K. Murai,et al.  Astrocytes Control Glutamate Receptor Levels at Developing Synapses through SPARC–β-Integrin Interactions , 2011, The Journal of Neuroscience.

[67]  J. Watters,et al.  The P2X7‐Egr pathway regulates nucleotide‐dependent inflammatory gene expression in microglia , 2011, Glia.

[68]  Pamela A McCombe,et al.  Effects of gender in amyotrophic lateral sclerosis. , 2010, Gender medicine.

[69]  M. Mehler,et al.  REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions , 2010, Cell cycle.

[70]  Di Wu,et al.  ROAST: rotation gene set tests for complex microarray experiments , 2010, Bioinform..

[71]  A. Bergman,et al.  REST and CoREST Modulate Neuronal Subtype Specification, Maturation and Maintenance , 2009, PloS one.

[72]  D. Jeong,et al.  Synapse formation regulated by protein tyrosine phosphatase receptor T through interaction with cell adhesion molecules and Fyn , 2009, The EMBO journal.

[73]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[74]  P. Caroni,et al.  A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice , 2009, Nature Neuroscience.

[75]  M. Baccarini,et al.  Essential role of B-Raf in oligodendrocyte maturation and myelination during postnatal central nervous system development , 2008, The Journal of cell biology.

[76]  T. Siddique,et al.  Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology , 2008, Neurobiology of Disease.

[77]  D. Gutmann,et al.  Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis , 2008, Nature Neuroscience.

[78]  C. Hoogenraad,et al.  Neuron-Specific Expression of Mutant Superoxide Dismutase Is Sufficient to Induce Amyotrophic Lateral Sclerosis in Transgenic Mice , 2008, The Journal of Neuroscience.

[79]  Hynek Wichterle,et al.  Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons , 2007, Nature Neuroscience.

[80]  J. Peters,et al.  The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) , 2007 .

[81]  D. Rowitch,et al.  Insulin‐like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination , 2007, Glia.

[82]  S. Mckercher,et al.  Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis , 2006, Proceedings of the National Academy of Sciences.

[83]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[84]  W. Frankel,et al.  Gait analysis detects early changes in transgenic SOD1(G93A) mice , 2005, Muscle & nerve.

[85]  Gordon K. Smyth,et al.  Use of within-array replicate spots for assessing differential expression in microarray experiments , 2005, Bioinform..

[86]  P. Caroni,et al.  Accumulation of SOD1 Mutants in Postnatal Motoneurons Does Not Cause Motoneuron Pathology or Motoneuron Disease , 2002, The Journal of Neuroscience.

[87]  R. Shiekhattar,et al.  A core–BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[88]  A. Pramatarova,et al.  Neuron-Specific Expression of Mutant Superoxide Dismutase 1 in Transgenic Mice Does Not Lead to Motor Impairment , 2001, The Journal of Neuroscience.

[89]  T. Komori,et al.  Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis , 2000, Acta Neuropathologica.

[90]  W. Snider,et al.  Restricted Expression of G86R Cu/Zn Superoxide Dismutase in Astrocytes Results in Astrocytosis But Does Not Cause Motoneuron Degeneration , 2000, The Journal of Neuroscience.

[91]  M. Mattson,et al.  Presence of 4‐hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis , 1998, Annals of neurology.

[92]  M. Gurney,et al.  Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS) , 1995, Brain Research.

[93]  Shyang Chang,et al.  A new criterion for automatic multilevel thresholding , 1995, IEEE Trans. Image Process..

[94]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[95]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[96]  G. Zack,et al.  Automatic measurement of sister chromatid exchange frequency. , 1977, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[97]  J. V. Vanden Heuvel,et al.  The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). , 2007, Free radical biology & medicine.

[98]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[99]  Wen-Hsiang Tsai,et al.  Moment-preserving thresholding: a new approach , 1995 .

[100]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .