On the Origin of Heterotrophy.

[1]  Frances Westall,et al.  Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context , 2015 .

[2]  Christopher R. German,et al.  Pathways for abiotic organic synthesis at submarine hydrothermal fields , 2015, Proceedings of the National Academy of Sciences.

[3]  E. Brignole,et al.  The Structure of an Oxalate Oxidoreductase Provides Insight into Microbial 2-Oxoacid Metabolism , 2015, Biochemistry.

[4]  S. Gribaldo,et al.  The two-domain tree of life is linked to a new root for the Archaea , 2015, Proceedings of the National Academy of Sciences.

[5]  P. Schönheit,et al.  XacR - a novel transcriptional regulator of D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii. , 2015, Environmental microbiology.

[6]  P. Schönheit,et al.  The oxidative pentose phosphate pathway in the haloarchaeon Haloferax volcanii involves a novel type of glucose‐6‐phosphate dehydrogenase – The archaeal Zwischenferment , 2015, FEBS letters.

[7]  C. Catlow,et al.  Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions. , 2015, Chemical communications.

[8]  Claudia Percivalle,et al.  Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. , 2015, Nature Chemistry.

[9]  H. Atomi,et al.  A pentose bisphosphate pathway for nucleoside degradation in Archaea. , 2015, Nature chemical biology.

[10]  Eva E. Stüeken,et al.  Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr , 2015, Nature.

[11]  L. Dartnell,et al.  An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents , 2014, Journal of Molecular Evolution.

[12]  V. Müller,et al.  Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria , 2014, Nature Reviews Microbiology.

[13]  Filipa L. Sousa,et al.  Origins of major archaeal clades correspond to gene acquisitions from bacteria , 2014, Nature.

[14]  Filipa L. Sousa,et al.  Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. , 2014, Biochimica et biophysica acta.

[15]  M. Keller,et al.  Non‐enzymatic glycolysis and pentose phosphate pathway‐like reactions in a plausible Archean ocean , 2014, Molecular systems biology.

[16]  B. Siebers,et al.  Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation , 2014, Microbiology and Molecular Reviews.

[17]  M. Adams,et al.  Characterization of Ten Heterotetrameric NDP-Dependent Acyl-CoA Synthetases of the Hyperthermophilic Archaeon Pyrococcus furiosus , 2014, Archaea.

[18]  P. Schönheit,et al.  Acetate formation in the photoheterotrophic bacterium Chloroflexus aurantiacus involves an archaeal type ADP-forming acetyl-CoA synthetase isoenzyme I. , 2013, FEMS microbiology letters.

[19]  T. Fukui,et al.  Characterization of Two Members among the Five ADP-Forming Acyl Coenzyme A (Acyl-CoA) Synthetases Reveals the Presence of a 2-(Imidazol-4-yl)Acetyl-CoA Synthetase in Thermococcus kodakarensis , 2013, Journal of bacteriology.

[20]  R. Thauer,et al.  Clostridium acidurici Electron-Bifurcating Formate Dehydrogenase , 2013, Applied and Environmental Microbiology.

[21]  J. Amend,et al.  The energetics of organic synthesis inside and outside the cell , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  T. McCollom Miller-Urey and Beyond: What Have We Learned About Prebiotic Organic Synthesis Reactions in the Past 60 Years? , 2013 .

[23]  J. Seewald,et al.  Serpentinites, Hydrogen, and Life , 2013 .

[24]  J. W. Peters,et al.  The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. , 2013, FEMS microbiology reviews.

[25]  R. Thauer,et al.  Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. , 2013, Biochimica et biophysica acta.

[26]  G. Gottschalk,et al.  Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum , 2012, BMC Genomics.

[27]  W. Martin,et al.  The Origin of Membrane Bioenergetics , 2012, Cell.

[28]  R. Daniel,et al.  The Purine-Utilizing Bacterium Clostridium acidurici 9a: A Genome-Guided Metabolic Reconsideration , 2012, PloS one.

[29]  J. W. Peters,et al.  The origin of life: look up and look down. , 2012, Astrobiology.

[30]  H. Dobbek,et al.  Enzyme catalyzed radical dehydrations of hydroxy acids. , 2012, Biochimica et biophysica acta.

[31]  H. Atomi,et al.  Enzymatic Characterization of AMP Phosphorylase and Ribose-1,5-Bisphosphate Isomerase Functioning in an Archaeal AMP Metabolic Pathway , 2012, Journal of bacteriology.

[32]  William B. Whitman,et al.  Sulfur metabolism in archaea reveals novel processes. , 2012, Environmental microbiology.

[33]  Brian C. Thomas,et al.  Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla , 2012, Science.

[34]  Raffaele Saladino,et al.  Formamide and the origin of life. , 2012, Physics of life reviews.

[35]  M. Adams,et al.  Deletion Strains Reveal Metabolic Roles for Key Elemental Sulfur-Responsive Proteins in Pyrococcus furiosus , 2011, Journal of bacteriology.

[36]  G. Fuchs Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? , 2011, Annual review of microbiology.

[37]  Robert L. White,et al.  Glutamate racemization and catabolism in Fusobacterium varium , 2011, The FEBS journal.

[38]  H. Atomi,et al.  Novel metabolic pathways in Archaea. , 2011, Current opinion in microbiology.

[39]  Scott R. Miller,et al.  A late methanogen origin for molybdenum‐dependent nitrogenase , 2011, Geobiology.

[40]  E. Pelletier,et al.  Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence , 2010, BMC Genomics.

[41]  V. Müller,et al.  Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase , 2010, Proceedings of the National Academy of Sciences.

[42]  S. Kelly,et al.  Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes , 2010, Proceedings of the Royal Society B: Biological Sciences.

[43]  G. Fuchs,et al.  Autotrophic carbon fixation in archaea , 2010, Nature Reviews Microbiology.

[44]  G. Fuchs,et al.  Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme , 2010, Nature.

[45]  A. Wolfe Physiologically relevant small phosphodonors link metabolism to signal transduction. , 2010, Current opinion in microbiology.

[46]  Noriaki Masui,et al.  Acetogenesis in Deep Subseafloor Sediments of The Juan de Fuca Ridge Flank: A Synthesis of Geochemical, Thermodynamic, and Gene-based Evidence , 2010 .

[47]  M. Lilley,et al.  Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field , 2010 .

[48]  S. Ragsdale,et al.  Nickel-based Enzyme Systems* , 2009, The Journal of Biological Chemistry.

[49]  Dylan Chivian,et al.  Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth , 2008, Science.

[50]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[51]  E. Koonin,et al.  A korarchaeal genome reveals insights into the evolution of the Archaea , 2008, Proceedings of the National Academy of Sciences.

[52]  H. Drake,et al.  Old Acetogens, New Light , 2008, Annals of the New York Academy of Sciences.

[53]  Deborah S. Kelley,et al.  Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field , 2008, Science.

[54]  L. Orgel,et al.  The Implausibility of Metabolic Cycles on the Prebiotic Earth , 2008, PLoS biology.

[55]  W. Martin,et al.  On the origin of biochemistry at an alkaline hydrothermal vent , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  H. Atomi,et al.  Archaeal Type III RuBisCOs Function in a Pathway for AMP Metabolism , 2007, Science.

[57]  B. Golding,et al.  Radical enzymes in anaerobes. , 2006, Annual review of microbiology.

[58]  R. Ladenstein,et al.  Structure of Methanocaldococcus jannaschii nucleoside kinase: an archaeal member of the ribokinase family. , 2006, Acta crystallographica. Section D, Biological crystallography.

[59]  R. Hedderich,et al.  Sodium Ion Pumps and Hydrogen Production in Glutamate Fermenting Anaerobic Bacteria , 2006, Journal of Molecular Microbiology and Biotechnology.

[60]  Keita Yamada,et al.  Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era , 2006, Nature.

[61]  B. Siebers,et al.  Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. , 2005, Current opinion in microbiology.

[62]  Robert H. White,et al.  Ribose-5-Phosphate Biosynthesis in Methanocaldococcus jannaschii Occurs in the Absence of a Pentose-Phosphate Pathway , 2005, Journal of bacteriology.

[63]  Y. Kamagata,et al.  Operation of the CO Dehydrogenase/Acetyl Coenzyme A Pathway in both Acetate Oxidation and Acetate Formation by the Syntrophically Acetate-Oxidizing Bacterium Thermacetogenium phaeum , 2005, Journal of bacteriology.

[64]  J. Amend,et al.  A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro‐organisms in oxic and anoxic environments , 2005 .

[65]  J. Andreesen Degradation of Heterocyclic Compounds , 2005 .

[66]  A. Fisher Marine hydrogeology: recent accomplishments and future opportunities , 2005 .

[67]  W. Buckel,et al.  Two beta‐alanyl‐CoA:ammonia lyases in Clostridium propionicum , 2005, The FEBS journal.

[68]  T. Urich,et al.  Dissimilatory Oxidation and Reduction of Elemental Sulfur in Thermophilic Archaea , 2004, Journal of bioenergetics and biomembranes.

[69]  W. Brand,et al.  A possible prebiotic formation of ammonia from dinitrogen on iron sulfide surfaces. , 2003, Angewandte Chemie.

[70]  B. Golding,et al.  Acryloyl-CoA reductase from Clostridium propionicum. An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein. , 2003, European journal of biochemistry.

[71]  J. Bada,et al.  Some Like It Hot, But Not the First Biomolecules , 2002, Science.

[72]  Deborah S. Kelley,et al.  Volcanoes, Fluids, and Life at Mid-Ocean Ridge Spreading Centers , 2002 .

[73]  P. Schönheit,et al.  Novel Type of ADP-Forming Acetyl Coenzyme A Synthetase in Hyperthermophilic Archaea: Heterologous Expression and Characterization of Isoenzymes from the Sulfate Reducer Archaeoglobus fulgidus and the Methanogen Methanococcus jannaschii , 2002, Journal of bacteriology.

[74]  D. Lovley,et al.  A hydrogen-based subsurface microbial community dominated by methanogens , 2002, Nature.

[75]  W. Buckel Unusual enzymes involved in five pathways of glutamate fermentation , 2001, Applied Microbiology and Biotechnology.

[76]  M. Adams,et al.  Key Role for Sulfur in Peptide Metabolism and in Regulation of Three Hydrogenases in the Hyperthermophilic ArchaeonPyrococcus furiosus , 2001, Journal of bacteriology.

[77]  P. Schönheit,et al.  Acetyl Coenzyme A Synthetase (ADP Forming) from the Hyperthermophilic Archaeon Pyrococcus furiosus: Identification, Cloning, Separate Expression of the Encoding Genes,acdAI and acdBI, in Escherichia coli, and In Vitro Reconstitution of the Active Heterotetrameric Enzyme from Its Recombinant Subunits , 1999, Journal of bacteriology.

[78]  R. Shapiro,et al.  Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[79]  P. Schönheit,et al.  Purification and Characterization of Two Extremely Thermostable Enzymes, Phosphate Acetyltransferase and Acetate Kinase, from the Hyperthermophilic Eubacterium Thermotoga maritima , 1999, Journal of bacteriology.

[80]  G. Cody,et al.  Abiotic nitrogen reduction on the early Earth , 1998, Nature.

[81]  J. Amend,et al.  Energetics of amino acid synthesis in hydrothermal ecosystems. , 1998, Science.

[82]  O. Kandler,et al.  Cell wall polymers in Archaea (Archaebacteria) , 1998, Cellular and Molecular Life Sciences CMLS.

[83]  B. Schink Energetics of syntrophic cooperation in methanogenic degradation , 1997, Microbiology and molecular biology reviews : MMBR.

[84]  M. Russell,et al.  The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front , 1997, Journal of the Geological Society.

[85]  P. Schönheit,et al.  Purification and properties of acetyl-CoA synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furiosus. , 1997, European journal of biochemistry.

[86]  M. Adams,et al.  Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus , 1996, Journal of bacteriology.

[87]  J. Harder,et al.  Microbial degradation of monoterpenes in the absence of molecular oxygen , 1995, Applied and environmental microbiology.

[88]  F. Widdel,et al.  Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria , 1994, Nature.

[89]  H. Drake,et al.  Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui , 1990, Journal of bacteriology.

[90]  C. Chyba,et al.  Cometary delivery of organic molecules to the early Earth. , 1990, Science.

[91]  P. Maloney,et al.  Oxalate:formate exchange. The basis for energy coupling in Oxalobacter. , 1989, The Journal of biological chemistry.

[92]  G. F. Joyce RNA evolution and the origins of life , 1989, Nature.

[93]  John A. Baross,et al.  Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life , 1985, Origins of life and evolution of the biosphere.

[94]  P. Dimroth,et al.  Life by a new decarboxylation‐dependent energy conservation mechanism with Na+ as coupling ion , 1984, The EMBO journal.

[95]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[96]  G. Vogels,et al.  Degradation of purines and pyrimidines by microorganisms , 1976, Bacteriological reviews.

[97]  H. A. Barker,et al.  Two Pathways of Glutamate Fermentation by Anaerobic Bacteria , 1974, Journal of bacteriology.

[98]  R. Thauer,et al.  Energy production in anaerobic organisms. , 1970, Angewandte Chemie.

[99]  J. T. Wachsman,et al.  CHARACTERIZATION OF AN OROTIC ACID FERMENTING BACTERIUM, ZYMOBACTERIUM OROTICUM, NOV. GEN., NOV. SPEC , 1954, Journal of bacteriology.

[100]  R. Rabus,et al.  A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. , 2015, Advances in microbial physiology.

[101]  W. Brazelton,et al.  Serpentinization, Carbon, and Deep Life , 2013 .

[102]  J. Amend,et al.  Energetics of Biomolecule Synthesis on Early Earth , 2009 .

[103]  A. H. Stouthamer A theoretical study on the amount of ATP required for synthesis of microbial cell material , 2007, Antonie van Leeuwenhoek.

[104]  J. Andreesen Glycine metabolism in anaerobes , 2004, Antonie van Leeuwenhoek.

[105]  T. Schäfer,et al.  Acetyl-CoA synthetase (ADP forming) in archaea, a novel enzyme involved in acetate formation and ATP synthesis , 2004, Archives of Microbiology.

[106]  J. Zeikus,et al.  Characterization of the H 2-and CO-Dependent Chemolithotrophic Potentials of the Acetogens Clostridium thermoaceticum and Acetogenium kivuit , 2004 .

[107]  G. Mead,et al.  The metabolism of pyrimidines by proteolytic clostridia , 2004, Archives of Microbiology.

[108]  M. Keynes Organic compounds in carbonaceous meteorites , 2002 .

[109]  Hans G. Schlegel,et al.  Biology of the prokaryotes , 1999 .

[110]  Stephen H. Zinder,et al.  Syntrophic Acetate Oxidation and “Reversible Acetogenesis” , 1994 .

[111]  G. Wächtershäuser,et al.  Groundworks for an evolutionary biochemistry: the iron-sulphur world. , 1992, Progress in biophysics and molecular biology.

[112]  Frederick C. Neidhardt,et al.  Physiology of the bacterial cell , 1990 .

[113]  W. Buckel [42] Biotin-dependent decarboxylases as bacterial sodium pumps: Purification and reconstitution of glutaconyl-CoA decarboxylase from Acidaminococcus fermentans , 1986 .

[114]  L. H. Stickland Studies in the metabolism of the strict anaerobes (genus Clostridium): The chemical reactions by which Cl. sporogenes obtains its energy. , 1934, The Biochemical journal.