A radiative transfer model-based method for the estimation of grassland aboveground biomass

Abstract This paper presents a novel method to derive grassland aboveground biomass (AGB) based on the PROSAILH (PROSPECT + SAILH) radiative transfer model (RTM). Two variables, leaf area index (LAI, m2m−2, defined as a one-side leaf area per unit of horizontal ground area) and dry matter content (DMC, gcm−2, defined as the dry matter per leaf area), were retrieved using PROSAILH and reflectance data from Landsat 8 OLI product. The result of LAI × DMC was regarded as the estimated grassland AGB according to their definitions. The well-known ill-posed inversion problem when inverting PROSAILH was alleviated using ecological criteria to constrain the simulation scenario and therefore the number of simulated spectra. A case study of the presented method was applied to a plateau grassland in China to estimate its AGB. The results were compared to those obtained using an exponential regression, a partial least squares regression (PLSR) and an artificial neural networks (ANN). The RTM-based method offered higher accuracy (R2 = 0.64 and RMSE = 42.67 gm−2) than the exponential regression (R2 = 0.48 and RMSE = 41.65 gm−2) and the ANN (R2 = 0.43 and RMSE = 46.26 gm−2). However, the proposed method offered similar performance than PLSR as presented better determination coefficient than PLSR (R2 = 0.55) but higher RMSE (RMSE = 37.79 gm−2). Although it is still necessary to test these methodologies in other areas, the RTM-based method offers greater robustness and reproducibility to estimate grassland AGB at large scale without the need to collect field measurements and therefore is considered the most promising methodology.

[1]  Jianxi Huang,et al.  Jointly Assimilating MODIS LAI and ET Products Into the SWAP Model for Winter Wheat Yield Estimation , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[2]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[3]  Andrew K. Skidmore,et al.  Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[4]  Moses Azong Cho,et al.  Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system , 2012 .

[5]  Matthew F. McCabe,et al.  Recent reversal in loss of global terrestrial biomass , 2015 .

[6]  Peter R. J. North,et al.  Three-dimensional forest light interaction model using a Monte Carlo method , 1996, IEEE Trans. Geosci. Remote. Sens..

[7]  R. Houborg,et al.  Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data , 2007 .

[8]  C. Woodcock,et al.  Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland , 2004 .

[9]  A. J. Stern,et al.  Application of MODIS derived parameters for regional crop yield assessment , 2005 .

[10]  Binbin He,et al.  An Extended Approach for Biomass Estimation in a Mixed Vegetation Area Using ASAR and TM Data , 2014 .

[11]  Jianxi Huang,et al.  Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield , 2013, Math. Comput. Model..

[12]  S. Verzakov,et al.  Estimating grassland biomass using SVM band shaving of hyperspectral data , 2007 .

[13]  Maurizio Santoro,et al.  Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band , 2012 .

[14]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[15]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[16]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[17]  S. Solberg,et al.  Monitoring spruce volume and biomass with InSAR data from TanDEM-X , 2013 .

[18]  W. Cohen,et al.  Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest , 2005 .

[19]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[20]  R. Valentini,et al.  Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels , 2015 .

[21]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[22]  Emilio Chuvieco,et al.  Aboveground biomass assessment in Colombia: a remote sensing approach. , 2009 .

[23]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. Ii: Numerical Results , 2007 .

[24]  John R. Jensen,et al.  Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data , 1999 .

[25]  S. Schmidtlein,et al.  Mapping of continuous floristic gradients in grasslands using hyperspectral imagery , 2004 .

[26]  Lei Zhang,et al.  A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China , 2009 .

[27]  Jean-Philippe Gastellu-Etchegorry,et al.  DART: a 3D model for simulating satellite images and studying surface radiation budget , 2004 .

[28]  Nicholas C. Coops,et al.  Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest , 2012 .

[29]  Sandra Englhart,et al.  Aboveground biomass retrieval in tropical forests — The potential of combined X- and L-band SAR data use , 2011 .

[30]  Clement Atzberger,et al.  LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .

[31]  Xianjun Hao,et al.  Estimating dry matter content from spectral reflectance for green leaves of different species , 2011 .

[32]  Craig S. T. Daughtry,et al.  Remote sensing of fuel moisture content from ratios of narrow-band vegetation water and dry-matter indices , 2013 .

[33]  Mehrez Zribi,et al.  Irrigated Grassland Monitoring Using a Time Series of TerraSAR-X and COSMO-SkyMed X-Band SAR Data , 2014, Remote. Sens..

[34]  Andrew K. Skidmore,et al.  Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy , 2009 .

[35]  Tal Svoray,et al.  SAR-based estimation of areal aboveground biomass (AAB) of herbaceous vegetation in the semi-arid zone: A modification of the water-cloud model , 2002 .

[36]  Emilio Chuvieco,et al.  Regional estimation of woodland moisture content by inverting Radiative Transfer Models , 2013 .

[37]  Martha C. Anderson,et al.  Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale , 2009 .

[38]  K. Barry,et al.  Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling , 2011 .

[39]  Zheng Niu,et al.  Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[40]  Jianping Guo,et al.  Reprint of: Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[41]  Jordi Cristóbal,et al.  Estimating above-ground biomass on mountain meadows and pastures through remote sensing , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[42]  L. Buydens,et al.  Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. , 2004, Environmental pollution.

[43]  Xing Li,et al.  Retrieval of Grassland Live Fuel Moisture Content by Parameterizing Radiative Transfer Model With Interval Estimated LAI , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[44]  R. H. Haas,et al.  Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands , 1993 .

[45]  Stephen H. Roxburgh,et al.  Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings , 2013 .

[46]  Jianping Guo,et al.  Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[47]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[48]  Tim R. McVicar,et al.  Assessment of the MODIS LAI product for Australian ecosystems , 2006 .

[49]  John J. A. Ingram,et al.  Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks , 2005 .

[50]  Prasanna H. Gowda,et al.  Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices , 1997 .

[51]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[52]  C. Woodcock,et al.  Multiscale analysis and validation of the MODIS LAI product: I. Uncertainty assessment , 2002 .

[53]  Yong Wang,et al.  An Extended Fourier Approach to Improve the Retrieved Leaf Area Index (LAI) in a Time Series from an Alpine Wetland , 2014, Remote. Sens..

[54]  Qi Chen,et al.  Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar , 2015 .

[55]  A. Kuusk A two-layer canopy reflectance model , 2001 .

[56]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[57]  G. Zhenga,et al.  Combining remote sensing imagery and forest age inventory for biomass mapping , 2007 .

[58]  Mehrez Zribi,et al.  Evaluation of ALOS/PALSAR L-Band Data for the Estimation of Eucalyptus Plantations Aboveground Biomass in Brazil , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[59]  Binbin He,et al.  Retrieval of leaf area index in alpine wetlands using a two-layer canopy reflectance model , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[60]  M. Hardisky The Influence of Soil Salinity, Growth Form, and Leaf Moisture on-the Spectral Radiance of Spartina alterniflora Canopies , 2008 .

[61]  Zhi Tang,et al.  Estimation of Grassland Live Fuel Moisture Content From Ratio of Canopy Water Content and Foliage Dry Biomass , 2015, IEEE Geoscience and Remote Sensing Letters.

[62]  Bo Wu,et al.  Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China , 2015 .

[63]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[64]  A. Kuusk The Hot Spot Effect in Plant Canopy Reflectance , 1991 .

[65]  S. Ganguly,et al.  Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data , 2014 .

[66]  J. Clevers,et al.  Combined use of optical and microwave remote sensing data for crop growth monitoring , 1996 .

[67]  Craig S. T. Daughtry,et al.  Towards estimation of canopy foliar biomass with spectral reflectance measurements , 2011 .

[68]  John R. Miller,et al.  Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model , 2010 .

[69]  Binbin He,et al.  Modified enhanced vegetation index for reducing topographic effects , 2015 .

[70]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[71]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[72]  Binbin He,et al.  Chlorophyll content estimation in arid grasslands from Landsat-8 OLI data , 2016 .

[73]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[74]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[75]  S. Ustin,et al.  Water content estimation in vegetation with MODIS reflectance data and model inversion methods , 2003 .

[76]  Marta Yebra,et al.  Estimation of dry matter content in leaves using normalized indexes and PROSPECT model inversion , 2012 .

[77]  David P. Miller,et al.  Status of atmospheric correction using a MODTRAN4-based algorithm , 2000, SPIE Defense + Commercial Sensing.

[78]  Hongliang Fang,et al.  Retrieving leaf area index with a neural network method: simulation and validation , 2003, IEEE Trans. Geosci. Remote. Sens..

[79]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[80]  Emilio Chuvieco,et al.  Generation of a Species-Specific Look-Up Table for Fuel Moisture Content Assessment , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[81]  Thuy Le Toan,et al.  Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management , 2003 .

[82]  J. Wolf,et al.  WOFOST: a simulation model of crop production. , 1989 .

[83]  Jianxi Huang,et al.  Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation , 2016 .

[84]  Ruben Van De Kerchove,et al.  Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[85]  D. Riaño,et al.  Estimation of live fuel moisture content from MODIS images for fire risk assessment , 2008 .

[86]  Xing Li,et al.  A Bayesian Network-Based Method to Alleviate the Ill-Posed Inverse Problem: A Case Study on Leaf Area Index and Canopy Water Content Retrieval , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[87]  Shengli Tao,et al.  Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data , 2015 .

[88]  R. Fensholt,et al.  Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements , 2004 .

[89]  Wei Su,et al.  Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with Ensemble Kalman Filter , 2013, Math. Comput. Model..

[90]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modeling: The Scattering by Arbitrarily Inclined Leaves (SAIL) model , 1984 .

[91]  F. M. Danson,et al.  A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving t , 2013 .

[92]  Shi Qiu,et al.  Estimating the Aboveground Dry Biomass of Grass by Assimilation of Retrieved LAI Into a Crop Growth Model , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[93]  Florian Hartig,et al.  Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass , 2014 .

[94]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[95]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[96]  Stuart Matthews,et al.  Effect of drying temperature on fuel moisture content measurements , 2010 .

[97]  Emilio Chuvieco,et al.  Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: Solving the ill-posed inverse problem , 2009 .

[98]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[99]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[100]  James A. Smith,et al.  LAI inversion using a back-propagation neural network trained with a multiple scattering model , 1993, IEEE Trans. Geosci. Remote. Sens..

[101]  Dehai Zhu,et al.  Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model , 2015 .

[102]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[103]  D. Slaughter,et al.  A NIR Technique for Rapid Determination of Soil Mineral Nitrogen , 1999, Precision Agriculture.

[104]  I. Supit,et al.  System description of the WOFOST 6.0 crop simulation model implemented in CGMS , 1994 .

[105]  J. Clevers,et al.  The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches , 1995 .