Spectral discretization of Darcy's equations with pressure dependent porosity

We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a spectral discretization of the resulting system of equations which takes into account the axisymmetry of the domain and of the flow. We prove optimal error estimates and present some numerical experiments which confirm the interest of the discretization.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Monique Dauge,et al.  Spectral Methods for Axisymmetric Domains , 1999 .

[3]  Christine Bernardi,et al.  Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[6]  Yvon Maday,et al.  Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries , 1990 .

[7]  J. Rappaz,et al.  On numerical approximation in bifurcation theory , 1990 .

[8]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[9]  Monique Dauge,et al.  Neumann and mixed problems on curvilinear polyhedra , 1992 .

[10]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[11]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[12]  Alfio Quarteroni,et al.  Some results of bernstein and jackson type for polynomial approximation inLp-spaces , 1984 .

[13]  Abner J. Salgado,et al.  Finite element discretization of Darcy's equations with pressure dependent porosity , 2010 .

[14]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[15]  Adel Blouza,et al.  Spectral Discretization of a Naghdi Shell Model , 2007, SIAM J. Numer. Anal..

[16]  Kumbakonam R. Rajagopal,et al.  ON A HIERARCHY OF APPROXIMATE MODELS FOR FLOWS OF INCOMPRESSIBLE FLUIDS THROUGH POROUS SOLIDS , 2007 .

[17]  Yves Achdou,et al.  A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations , 2003, Numerische Mathematik.

[18]  Petru Mironescu,et al.  Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces , 2001 .

[19]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .

[20]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .