Modeling Fluid's Dynamics with Master Equations in Ultrametric Spaces Representing the Treelike Structure of Capillary Networks
暂无分享,去创建一个
Andrei Khrennikov | Klaudia Oleschko | María de Jesús Correa López | A. Khrennikov | K. Oleschko | María de Jesús Correa López
[1] Branko Dragovich. Adelic Harmonic Oscillator , 1995 .
[2] Jintu Fan,et al. Treelike networks accelerating capillary flow. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[3] Igor Volovich,et al. p-adic string , 1987 .
[4] I. V. Volovich,et al. p-adic space-time and string theory , 1987 .
[5] V A Avetisov,et al. p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .
[6] A. F. Monna. Sur une transformation simple des nombres P-adiques en nombres reels , 1952 .
[7] Knut Jørgen Måløy,et al. Self-similarity and structure of DLA and viscous fingering clusters , 1989 .
[8] Anatoly N. Kochubei,et al. Distributed order calculus and equations of ultraslow diffusion , 2008 .
[9] Alain Escassut,et al. Ultrametric Banach Algebras , 2003 .
[10] Boger,et al. Fractal structure of hydrodynamic dispersion in porous media. , 1988, Physical review letters.
[11] Pertti Hari,et al. Trees as a water transport system. , 1986 .
[12] L. A. Richards. Capillary conduction of liquids through porous mediums , 1931 .
[13] Сергей Владимирович Козырев,et al. Псевдодифференциальные операторы на ультраметрических пространствах и ультраметрические всплески@@@Pseudodifferential operators on ultrametric spaces and ultrametric wavelets , 2005 .
[14] A. Khrennikov,et al. Wavelets on ultrametric spaces , 2005 .
[15] Andrei Khrennikov,et al. p-Adic Valued Distributions in Mathematical Physics , 1994 .
[16] Branko Dragovich,et al. A p-adic model of DNA sequence and genetic code , 2006, ArXiv.
[17] Sergei Kozyrev,et al. Wavelet analysis as a p-adic spectral analysis , 2008 .
[18] S. V. Kozyrev,et al. Dynamics on rugged landscapes of energy and ultrametric diffusion , 2010 .
[19] N. V. Churaev. Liquid and Vapour Flows in Porous Bodies: Surface Phenomena , 2000 .
[20] A. Khrennikov,et al. Non-Haar $p$-adic wavelets and their application to pseudo-differential operators and equations , 2008, 0808.3338.
[21] Joerg Richter. The Soil as a Reactor: Modelling Processes in the Soil , 1987 .
[22] Hou Lianhua,et al. Oil accumulation and concentration regularity of volcanic lithostratigraphic oil reservoir:A case from upper-plate Carboniferous of KA-BAI fracture zone,Junggar Basin , 2007 .
[23] Anatoly N. Kochubei,et al. Cauchy problem for fractional diffusion-wave equations with variable coefficients , 2013, 1308.6452.
[24] R. Lenormand. Flow through porous media: limits of fractal patterns , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[25] V. A. Avetisov,et al. Application of p-adic analysis to models of spontaneous breaking of the replica symmetry , 2008 .
[26] Van Genuchten,et al. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .
[27] Fionn Murtagh,et al. Fast, Linear Time Hierarchical Clustering using the Baire Metric , 2011, J. Classif..
[28] Mohammad Reza Rasaei,et al. Investigating drainage rate effects on fractal patterns and capillary fingering in a realistic glass micromodel , 2014 .
[29] A. Robert,et al. A Course in p-adic Analysis , 2000 .
[30] Kathleen L. Wolf,et al. ROADSIDE URBAN TREES Balancing Safety and Community Values , 2006 .
[31] Yuan Yan Tang,et al. Elastic registration for retinal images based on reconstructed vascular trees , 2006, IEEE Transactions on Biomedical Engineering.
[32] Sergio Albeverio,et al. The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory , 2011 .
[33] Andrei Khrennikov,et al. Gene expression from polynomial dynamics in the 2-adic information space , 2006, q-bio/0611068.
[34] Maximilien Vermandel,et al. Three-dimensional skeletonization and symbolic description in vascular imaging: preliminary results , 2013, International Journal of Computer Assisted Radiology and Surgery.
[35] K. Chen,et al. The physics of fractals , 1989 .
[36] K. Oleschko,et al. Probability density function: A tool for simultaneous monitoring of pore/solid roughness and moisture content , 2010 .
[37] Marc-Olivier Coppens,et al. Anomalous Knudsen diffusion in simple pore models , 2016 .
[38] K. Oleschko,et al. Weathering: Toward a Fractal Quantifying , 2004 .
[39] A. Khrennikov. Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .
[40] Igor Volovich,et al. On the p-adic summability of the anharmonic oscillator , 1988 .
[41] W. A. Zuniga-Galindo. Fundamental Solutions of Pseudo-Differential Operators over p-Adic Fields. , 2003 .
[42] Cheng Li,et al. Tracing retinal vessel trees by transductive inference , 2014, BMC Bioinformatics.
[43] Andrei Khrennikov,et al. p-Adic valued quantization , 2009 .
[44] Сергей Владимирович Козырев,et al. Всплески и спектральный анализ ультраметрических псевдодифференциальных операторов@@@Wavelets and spectral analysis of ultrametric pseudodifferential operators , 2007 .
[45] J. Klafter,et al. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .
[46] Gabor Korvin,et al. Fractal radar scattering from soil. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[47] Andrei Khrennikov,et al. Application of p-Adic Wavelets to Model Reaction–Diffusion Dynamics in Random Porous Media , 2016 .
[48] Branko Dragovich,et al. p-Adic Modelling of the Genome and the Genetic Code , 2007, Comput. J..
[49] Jan E. Holly,et al. Pictures of Ultrametric Spaces, the p-adic Numbers, and Valued Fields , 2001, Am. Math. Mon..
[50] Fionn Murtagh,et al. On Ultrametric Algorithmic Information , 2007, Comput. J..
[51] Fionn Murtagh,et al. The new science of complex systems through ultrametric analysis: Application to search and discovery, to narrative and to thinking , 2013 .
[52] J. Feder,et al. Viscous fingering fractals in porous media. , 1985, Physical review letters.
[53] S. V. Kozyrev,et al. p-Adic Pseudodifferential Operators and p-Adic Wavelets , 2003, math-ph/0303045.
[54] S L Wearne,et al. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[55] Anatoly N. Kochubei,et al. Radial Solutions of Non-Archimedean Pseudo-Differential Equations , 2013, 1302.4850.
[56] W. A. Zúñiga-Galindo,et al. p-Adic elliptic quadratic forms, parabolic-type pseudodifferential equations with variable coefficients and Markov processes , 2013, 1312.2476.
[57] Anatoly N. Kochubei,et al. Asymptotic properties of solutions of the fractional diffusion-wave equation , 2014, 1404.7612.
[58] Gabor Korvin,et al. Entropy of Shortest Distance (ESD) as Pore Detector and Pore-Shape Classifier , 2013, Entropy.
[59] Fionn Murtagh,et al. Ultrametric model of mind, I: Review , 2012, ArXiv.
[60] I. Procaccia,et al. Analytical solutions for diffusion on fractal objects. , 1985, Physical review letters.
[61] Anatoly N. Kochubei,et al. Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .
[62] H. Stanley,et al. Multifractal phenomena in physics and chemistry , 1988, Nature.
[63] S. V. Kozyrev,et al. APPLICATION OF p-ADIC ANALYSIS TO TIME SERIES , 2013, 1312.3878.
[64] G Goldstein,et al. Water transport in trees: current perspectives, new insights and some controversies. , 2001, Environmental and experimental botany.
[65] S. V. Kozyrev. Ultrametric pseudodifferential operators and wavelets for the case of non homogeneous measure , 2008 .
[66] Andrei Khrennikov,et al. Theory of P-Adic Distributions: Linear and Nonlinear Models , 2010 .
[67] S. V. Kozyrev,et al. Application of p-adic analysis to models of breaking of replica symmetry , 1999 .
[68] W. A. Zúñiga-Galindo. Parabolic Equations and Markov Processes Over p-Adic Fields , 2006 .
[69] Fionn Murtagh,et al. Fast, linear time, m-adic hierarchical clustering for search and retrieval using the Baire metric, with linkages to generalized ultrametrics, hashing, formal concept analysis, and precision of data measurement , 2011, 1111.6254.
[70] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[71] Fionn Murtagh,et al. Ultrametric model of mind, II: Application to text content analysis , 2012, ArXiv.
[72] H. Pitsch,et al. Anomalous Knudsen diffusion and reactions in disordered porous media , 2008 .
[73] Fionn Murtagh,et al. The Haar Wavelet Transform of a Dendrogram , 2006, J. Classif..
[74] Marc-Olivier Coppens,et al. Knudsen self- and Fickian diffusion in rough nanoporous media , 2003 .
[75] Tomáš Ficker. Electrostatic discharges and multifractal analysis of their Lichtenberg figures , 1999 .
[76] S. V. Kozyrev. Ultrametric Analysis and Interbasin Kinetics , 2006 .
[77] O. Torsæter,et al. A coreflood investigation of nanofluid enhanced oil recovery , 2013 .