Modeling Fluid's Dynamics with Master Equations in Ultrametric Spaces Representing the Treelike Structure of Capillary Networks

We present a new conceptual approach for modeling of fluid flows in random porous media based on explicit exploration of the treelike geometry of complex capillary networks. Such patterns can be re ...

[1]  Branko Dragovich Adelic Harmonic Oscillator , 1995 .

[2]  Jintu Fan,et al.  Treelike networks accelerating capillary flow. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Igor Volovich,et al.  p-adic string , 1987 .

[4]  I. V. Volovich,et al.  p-adic space-time and string theory , 1987 .

[5]  V A Avetisov,et al.  p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .

[6]  A. F. Monna Sur une transformation simple des nombres P-adiques en nombres reels , 1952 .

[7]  Knut Jørgen Måløy,et al.  Self-similarity and structure of DLA and viscous fingering clusters , 1989 .

[8]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[9]  Alain Escassut,et al.  Ultrametric Banach Algebras , 2003 .

[10]  Boger,et al.  Fractal structure of hydrodynamic dispersion in porous media. , 1988, Physical review letters.

[11]  Pertti Hari,et al.  Trees as a water transport system. , 1986 .

[12]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[13]  Сергей Владимирович Козырев,et al.  Псевдодифференциальные операторы на ультраметрических пространствах и ультраметрические всплески@@@Pseudodifferential operators on ultrametric spaces and ultrametric wavelets , 2005 .

[14]  A. Khrennikov,et al.  Wavelets on ultrametric spaces , 2005 .

[15]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[16]  Branko Dragovich,et al.  A p-adic model of DNA sequence and genetic code , 2006, ArXiv.

[17]  Sergei Kozyrev,et al.  Wavelet analysis as a p-adic spectral analysis , 2008 .

[18]  S. V. Kozyrev,et al.  Dynamics on rugged landscapes of energy and ultrametric diffusion , 2010 .

[19]  N. V. Churaev Liquid and Vapour Flows in Porous Bodies: Surface Phenomena , 2000 .

[20]  A. Khrennikov,et al.  Non-Haar $p$-adic wavelets and their application to pseudo-differential operators and equations , 2008, 0808.3338.

[21]  Joerg Richter The Soil as a Reactor: Modelling Processes in the Soil , 1987 .

[22]  Hou Lianhua,et al.  Oil accumulation and concentration regularity of volcanic lithostratigraphic oil reservoir:A case from upper-plate Carboniferous of KA-BAI fracture zone,Junggar Basin , 2007 .

[23]  Anatoly N. Kochubei,et al.  Cauchy problem for fractional diffusion-wave equations with variable coefficients , 2013, 1308.6452.

[24]  R. Lenormand Flow through porous media: limits of fractal patterns , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  V. A. Avetisov,et al.  Application of p-adic analysis to models of spontaneous breaking of the replica symmetry , 2008 .

[26]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[27]  Fionn Murtagh,et al.  Fast, Linear Time Hierarchical Clustering using the Baire Metric , 2011, J. Classif..

[28]  Mohammad Reza Rasaei,et al.  Investigating drainage rate effects on fractal patterns and capillary fingering in a realistic glass micromodel , 2014 .

[29]  A. Robert,et al.  A Course in p-adic Analysis , 2000 .

[30]  Kathleen L. Wolf,et al.  ROADSIDE URBAN TREES Balancing Safety and Community Values , 2006 .

[31]  Yuan Yan Tang,et al.  Elastic registration for retinal images based on reconstructed vascular trees , 2006, IEEE Transactions on Biomedical Engineering.

[32]  Sergio Albeverio,et al.  The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory , 2011 .

[33]  Andrei Khrennikov,et al.  Gene expression from polynomial dynamics in the 2-adic information space , 2006, q-bio/0611068.

[34]  Maximilien Vermandel,et al.  Three-dimensional skeletonization and symbolic description in vascular imaging: preliminary results , 2013, International Journal of Computer Assisted Radiology and Surgery.

[35]  K. Chen,et al.  The physics of fractals , 1989 .

[36]  K. Oleschko,et al.  Probability density function: A tool for simultaneous monitoring of pore/solid roughness and moisture content , 2010 .

[37]  Marc-Olivier Coppens,et al.  Anomalous Knudsen diffusion in simple pore models , 2016 .

[38]  K. Oleschko,et al.  Weathering: Toward a Fractal Quantifying , 2004 .

[39]  A. Khrennikov Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .

[40]  Igor Volovich,et al.  On the p-adic summability of the anharmonic oscillator , 1988 .

[41]  W. A. Zuniga-Galindo Fundamental Solutions of Pseudo-Differential Operators over p-Adic Fields. , 2003 .

[42]  Cheng Li,et al.  Tracing retinal vessel trees by transductive inference , 2014, BMC Bioinformatics.

[43]  Andrei Khrennikov,et al.  p-Adic valued quantization , 2009 .

[44]  Сергей Владимирович Козырев,et al.  Всплески и спектральный анализ ультраметрических псевдодифференциальных операторов@@@Wavelets and spectral analysis of ultrametric pseudodifferential operators , 2007 .

[45]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[46]  Gabor Korvin,et al.  Fractal radar scattering from soil. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Andrei Khrennikov,et al.  Application of p-Adic Wavelets to Model Reaction–Diffusion Dynamics in Random Porous Media , 2016 .

[48]  Branko Dragovich,et al.  p-Adic Modelling of the Genome and the Genetic Code , 2007, Comput. J..

[49]  Jan E. Holly,et al.  Pictures of Ultrametric Spaces, the p-adic Numbers, and Valued Fields , 2001, Am. Math. Mon..

[50]  Fionn Murtagh,et al.  On Ultrametric Algorithmic Information , 2007, Comput. J..

[51]  Fionn Murtagh,et al.  The new science of complex systems through ultrametric analysis: Application to search and discovery, to narrative and to thinking , 2013 .

[52]  J. Feder,et al.  Viscous fingering fractals in porous media. , 1985, Physical review letters.

[53]  S. V. Kozyrev,et al.  p-Adic Pseudodifferential Operators and p-Adic Wavelets , 2003, math-ph/0303045.

[54]  S L Wearne,et al.  Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Anatoly N. Kochubei,et al.  Radial Solutions of Non-Archimedean Pseudo-Differential Equations , 2013, 1302.4850.

[56]  W. A. Zúñiga-Galindo,et al.  p-Adic elliptic quadratic forms, parabolic-type pseudodifferential equations with variable coefficients and Markov processes , 2013, 1312.2476.

[57]  Anatoly N. Kochubei,et al.  Asymptotic properties of solutions of the fractional diffusion-wave equation , 2014, 1404.7612.

[58]  Gabor Korvin,et al.  Entropy of Shortest Distance (ESD) as Pore Detector and Pore-Shape Classifier , 2013, Entropy.

[59]  Fionn Murtagh,et al.  Ultrametric model of mind, I: Review , 2012, ArXiv.

[60]  I. Procaccia,et al.  Analytical solutions for diffusion on fractal objects. , 1985, Physical review letters.

[61]  Anatoly N. Kochubei,et al.  Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .

[62]  H. Stanley,et al.  Multifractal phenomena in physics and chemistry , 1988, Nature.

[63]  S. V. Kozyrev,et al.  APPLICATION OF p-ADIC ANALYSIS TO TIME SERIES , 2013, 1312.3878.

[64]  G Goldstein,et al.  Water transport in trees: current perspectives, new insights and some controversies. , 2001, Environmental and experimental botany.

[65]  S. V. Kozyrev Ultrametric pseudodifferential operators and wavelets for the case of non homogeneous measure , 2008 .

[66]  Andrei Khrennikov,et al.  Theory of P-Adic Distributions: Linear and Nonlinear Models , 2010 .

[67]  S. V. Kozyrev,et al.  Application of p-adic analysis to models of breaking of replica symmetry , 1999 .

[68]  W. A. Zúñiga-Galindo Parabolic Equations and Markov Processes Over p-Adic Fields , 2006 .

[69]  Fionn Murtagh,et al.  Fast, linear time, m-adic hierarchical clustering for search and retrieval using the Baire metric, with linkages to generalized ultrametrics, hashing, formal concept analysis, and precision of data measurement , 2011, 1111.6254.

[70]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[71]  Fionn Murtagh,et al.  Ultrametric model of mind, II: Application to text content analysis , 2012, ArXiv.

[72]  H. Pitsch,et al.  Anomalous Knudsen diffusion and reactions in disordered porous media , 2008 .

[73]  Fionn Murtagh,et al.  The Haar Wavelet Transform of a Dendrogram , 2006, J. Classif..

[74]  Marc-Olivier Coppens,et al.  Knudsen self- and Fickian diffusion in rough nanoporous media , 2003 .

[75]  Tomáš Ficker Electrostatic discharges and multifractal analysis of their Lichtenberg figures , 1999 .

[76]  S. V. Kozyrev Ultrametric Analysis and Interbasin Kinetics , 2006 .

[77]  O. Torsæter,et al.  A coreflood investigation of nanofluid enhanced oil recovery , 2013 .