Predictive Model Fusion: A Modular Approach to Big, Unstructured Data

Model fusion methods, or more generally ensemble methods, are a useful tool for prediction. Combining predictions from a set of models smoothes out biases and reduces variances of predictions from individual models, and hence, the combined predictions typically outperform those from individual models. In many situations individual predictions are arithmetically averaged with equal weights; however, in the presence of correlated models the fusion process is required to account for association between models. Otherwise, the naively averaged predictions will be suboptimal. This chapter describes optimal model fusion principles and illustrates the potential pitfalls of naive fusion in the presence of correlated models for binary data. An efficient algorithm for correlated model fusion is detailed and applied to algorithms mining social media information to predict civil unrest.

[1]  E. Kolaczyk Bayesian Multiscale Models for Poisson Processes , 1999 .

[2]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[3]  Marco A. R. Ferreira,et al.  Dynamic Multiscale Spatiotemporal Models for Poisson Data , 2017 .

[4]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[5]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[6]  C. Robert Simulation of truncated normal variables , 2009, 0907.4010.

[7]  Carla E. Brodley,et al.  Addressing the Selective Superiority Problem: Automatic Algorithm/Model Class Selection , 1993 .

[8]  Marco A. R. Ferreira,et al.  Dynamic multiscale spatiotemporal models for Gaussian areal data , 2011 .

[9]  Marco A. R. Ferreira,et al.  Spatiotemporal Models for Gaussian Areal Data , 2009 .

[10]  A. Doucet,et al.  Efficient Bayesian Inference for Multivariate Probit Models With Sparse Inverse Correlation Matrices , 2012 .

[11]  D. Behrens,et al.  Gauging the potential for social unrest , 2009 .

[12]  Nicholas G. Polson,et al.  Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model , 2012, Journal of the American Statistical Association.

[13]  Xiao-Li Meng,et al.  The Art of Data Augmentation , 2001 .

[14]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[15]  Scott H. Holan,et al.  Analysis of Economic Data With Multiscale Spatio-temporal Models , 2008 .

[16]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[17]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[18]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[19]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[20]  Chang-Tien Lu,et al.  Analyzing Civil Unrest through Social Media , 2013, Computer.

[21]  Haiying Huang,et al.  Multiscale Statistical Models for Hierarchical Spatial Aggregation , 2010 .

[22]  Aravind Srinivasan,et al.  'Beating the news' with EMBERS: forecasting civil unrest using open source indicators , 2014, KDD.

[23]  Herbert K. H. Lee,et al.  Multiscale Modeling: A Bayesian Perspective , 2007 .

[24]  Jun S. Liu,et al.  Parameter Expansion for Data Augmentation , 1999 .

[25]  Jarad Niemi,et al.  Bayesian Analysis and Computational Methods for Dynamic Modeling , 2009 .

[26]  David Banks,et al.  Bayesian CAR models for syndromic surveillance on multiple data streams: Theory and practice , 2012, Inf. Fusion.

[27]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[28]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[29]  Daniel B. Neill,et al.  Fast subset scan for spatial pattern detection , 2012 .

[30]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[31]  Kathleen M. Carley Destabilization of covert networks , 2006, Comput. Math. Organ. Theory.

[32]  Brent Coull,et al.  NONLINEAR PREDICTIVE LATENT PROCESS MODELS FOR INTEGRATING SPATIO-TEMPORAL EXPOSURE DATA FROM MULTIPLE SOURCES. , 2014, The annals of applied statistics.

[33]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[34]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[35]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[36]  D. Nychka,et al.  Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .

[37]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[38]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[39]  Leon Derczynski,et al.  TIMEN: An Open Temporal Expression Normalisation Resource , 2012, LREC.

[40]  L. Hedges,et al.  Statistical Methods for Meta-Analysis , 1987 .

[41]  G. David Garson,et al.  Computerized Simulation in the Social Sciences , 2009 .

[42]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[43]  Nicholas G. Polson,et al.  Particle Learning and Smoothing , 2010, 1011.1098.