Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae

Taxis behaviour in Drosophila larva is thought to consist of distinct control mechanisms triggering specific actions. Here, we support a simpler hypothesis: that taxis results from direct sensory modulation of continuous lateral oscillations of the anterior body, sparing the need for ‘action selection’. Our analysis of larvae motion reveals a rhythmic, continuous lateral oscillation of the anterior body, encompassing all head-sweeps, small or large, without breaking the oscillatory rhythm. Further, we show that an agent-model that embeds this hypothesis reproduces a surprising number of taxis signatures observed in larvae. Also, by coupling the sensory input to a neural oscillator in continuous time, we show that the mechanism is robust and biologically plausible. The mechanism provides a simple architecture for combining information across modalities, and explaining how learnt associations modulate taxis. We discuss the results in the light of larval neural circuitry and make testable predictions. DOI: http://dx.doi.org/10.7554/eLife.15504.001

[1]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[2]  M. Dickinson,et al.  Free-flight responses of Drosophila melanogaster to attractive odors , 2006, Journal of Experimental Biology.

[3]  Matthieu Louis,et al.  A circuit supporting concentration-invariant odor perception in Drosophila , 2009, Journal of biology.

[4]  Aurel A. Lazar,et al.  System identification of Drosophila olfactory sensory neurons , 2011, Journal of Computational Neuroscience.

[5]  C. H. Green,et al.  Organization and patterns of inter- and intraspecific variation in the behaviour of Drosophila larvae , 1983, Animal Behaviour.

[6]  R. Cardé,et al.  Navigational Strategies Used by Insects to Find Distant, Wind-Borne Sources of Odor , 2008, Journal of Chemical Ecology.

[7]  Alex Gomez-Marin,et al.  Multilevel control of run orientation in Drosophila larval chemotaxis , 2014, Front. Behav. Neurosci..

[8]  A. Gomez-Marin,et al.  Active sampling and decision making in Drosophila chemotaxis , 2011, Nature communications.

[9]  J. Beshel,et al.  The good, the bad, and the hungry: how the central brain codes odor valence to facilitate food approach in Drosophila , 2016, Current Opinion in Neurobiology.

[10]  G. Vermeij Adaptation, Versatility, and Evolution , 1973 .

[11]  Natalie M Bernat,et al.  Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration , 2015, eLife.

[12]  Kristin Branson,et al.  Whole-central nervous system functional imaging in larval Drosophila , 2015, Nature Communications.

[13]  M. Cobb What and how do maggots smell? , 1999 .

[14]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[15]  John B. Thomas,et al.  A sensory feedback circuit coordinates muscle activity in Drosophila , 2007, Molecular and Cellular Neuroscience.

[16]  Bertram Gerber,et al.  Maggot learning and Synapsin function , 2013, Journal of Experimental Biology.

[17]  Claudio Altafini,et al.  Common dynamical features of sensory adaptation in photoreceptors and olfactory sensory neurons , 2013, Scientific Reports.

[18]  Barbara Webb,et al.  A Model of Drosophila Larva Chemotaxis , 2015, PLoS Comput. Biol..

[19]  Johannes Felsenberg,et al.  Activity of Defined Mushroom Body Output Neurons Underlies Learned Olfactory Behavior in Drosophila , 2015, Neuron.

[20]  Paul S. G. Stein Neurons, networks, and motor behavior , 1999 .

[21]  M. Cobb,et al.  Olfactory coding in a simple system: adaptation in Drosophila larvae , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  Aravinthan D. T. Samuel,et al.  Controlling airborne cues to study small animal navigation , 2012, Nature Methods.

[23]  André Fiala,et al.  Behavioral Neuroscience , 2022 .

[24]  Bertram Gerber,et al.  Olfactory learning in individually assayed Drosophila larvae. , 2003, Learning & memory.

[25]  Stefan R. Pulver,et al.  Autonomous Circuitry for Substrate Exploration in Freely Moving Drosophila Larvae , 2012, Current Biology.

[26]  S. Lockery,et al.  Evolution and Analysis of Minimal Neural Circuits for Klinotaxis in Caenorhabditis elegans , 2010, The Journal of Neuroscience.

[27]  H. Wilson Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience , 1999 .

[28]  John R. Carlson,et al.  Translation of Sensory Input into Behavioral Output via an Olfactory System , 2008, Neuron.

[29]  Shamik Dasgupta,et al.  A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila , 2009, Cell.

[30]  Mason Klein,et al.  Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics , 2015, bioRxiv.

[31]  L. Vosshall,et al.  Bilateral olfactory sensory input enhances chemotaxis behavior , 2008, Nature Neuroscience.

[32]  M. Heisenberg,et al.  An engram found? Evaluating the evidence from fruit flies , 2004, Current Opinion in Neurobiology.

[33]  Ryohei Kanzaki,et al.  Behavioral and neural basis of instinctive behavior in insects: Odor-source searching strategies without memory and learning , 1996, Robotics Auton. Syst..

[34]  Akira Fushiki,et al.  Development of larval motor circuits in Drosophila , 2012, Development, growth & differentiation.

[35]  Alex Gomez-Marin,et al.  Active sensation during orientation behavior in the Drosophila larva: more sense than luck , 2012, Current Opinion in Neurobiology.

[36]  S. Lockery,et al.  Evolution and Analysis of Minimal Neural Circuits for Klinotaxis in Caenorhabditis elegans , 2010, The Journal of Neuroscience.

[37]  Aravinthan D. T. Samuel,et al.  Sensorimotor structure of Drosophila larva phototaxis , 2013, Proceedings of the National Academy of Sciences.

[38]  Y. Arshavsky,et al.  The Role of Sensory Network Dynamics in Generating a Motor Program , 2005, The Journal of Neuroscience.

[39]  Marc Gershow,et al.  Sensory determinants of behavioral dynamics in Drosophila thermotaxis , 2014, Proceedings of the National Academy of Sciences.

[40]  Kazushi Yoshida,et al.  Parallel Use of Two Behavioral Mechanisms for Chemotaxis in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[41]  Laurence R. Harris,et al.  Sensorimotor transformation from light reception to phototactic behavior inDrosophila larvae (Diptera: Drosophilidae) , 1994, Journal of Insect Behavior.

[42]  R. Kerr,et al.  Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning , 2014, Science.

[43]  Bertram Gerber,et al.  The impact of odor–reward memory on chemotaxis in larval Drosophila , 2015, Learning & memory.

[44]  W. Foster BIOLOGICAL REVIEWS of the CAMBRIDGE PHILOSOPHICAL SOCIETY , 1995 .

[45]  E. A. Arbas,et al.  Active Behavior and Reflexive Responses: Another Perspective on Odor-Modulated Locomotion , 1997 .

[46]  Aravinthan D. T. Samuel,et al.  Navigational Decision Making in Drosophila Thermotaxis , 2010, The Journal of Neuroscience.

[47]  Leslie B. Vosshall,et al.  Chemotaxis Behavior Mediated by Single Larval Olfactory Neurons in Drosophila , 2005, Current Biology.

[48]  Barbara Webb,et al.  A Model of Larval Biomechanics Reveals Exploitable Passive Properties for Efficient Locomotion , 2015, Living Machines.

[49]  Katherine I. Nagel,et al.  Biophysical mechanisms underlying olfactory receptor neuron dynamics , 2010, Nature Neuroscience.

[50]  P. Shen,et al.  Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae. , 2013, Cell reports.

[51]  Brian J. Duistermars,et al.  Mechanisms of Odor-Tracking: Multiple Sensors for Enhanced Perception and Behavior , 2010, Front. Cell. Neurosci..

[52]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[53]  W. Hangartner,et al.  Structure and variability of the individual odor trail in Solenopsis geminata Fabr. (Hymenoptera, Formicidae) , 1969, Zeitschrift für vergleichende Physiologie.

[54]  Ring T. Cardé,et al.  Insect Pheromone Research , 1997, Springer US.

[55]  T. Tanimura,et al.  Learning the specific quality of taste reinforcement in larval Drosophila , 2015, eLife.

[56]  Zhefeng Gong,et al.  Two Pairs of Neurons in the Central Brain Control Drosophila Innate Light Preference , 2010, Science.

[57]  Nathan F. Lepora,et al.  Biomimetic and Biohybrid Systems , 2014, Lecture Notes in Computer Science.

[58]  B. Ache,et al.  Olfaction: Diverse Species, Conserved Principles , 2005, Neuron.

[59]  Parvez Ahammad,et al.  Dynamical feature extraction at the sensory periphery guides chemotaxis , 2015, eLife.

[60]  B. Webb,et al.  Searching for motifs in the behaviour of larval Drosophila melanogaster and Caenorhabditis elegans reveals continuity between behavioural states , 2015, Journal of The Royal Society Interface.

[61]  S. R. Farkas,et al.  Chemical Trail-Following by Flying Insects: A Mechanism for Orientation to a Distant Odor Source , 1972, Science.

[62]  C. Rickert,et al.  Morphological Characterization of the Entire Interneuron Population Reveals Principles of Neuromere Organization in the Ventral Nerve Cord of Drosophila , 2011, The Journal of Neuroscience.

[63]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[64]  W. Choi,et al.  Zigzag Turning Preference of Freely Crawling Cells , 2011, PloS one.

[65]  Marc Gershow,et al.  Two Alternating Motor Programs Drive Navigation in Drosophila Larva , 2011, PloS one.

[66]  Toru Aonishi,et al.  A novel behavioral strategy, continuous biased running, during chemotaxis in Drosophila larvae , 2014, Neuroscience Letters.

[67]  Sophia Mã ¶ ller,et al.  Biomechanics — Mechanical properties of living tissue , 1982 .

[68]  Kei Ito,et al.  Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae. , 2010, Learning & memory.

[69]  Jimena Berni,et al.  Genetic Dissection of a Regionally Differentiated Network for Exploratory Behavior in Drosophila Larvae , 2015, Current Biology.

[70]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.