Unidirectional invisibility and PT symmetry with graphene

We investigate the reflectionlessness and invisibility properties in the transverse electric (TE) mode solution of a linear homogeneous optical system which comprises the $\mathcal{PT}$-symmetric structures covered by graphene sheets. We derive analytic expressions, indicate roles of each parameter governing optical system with graphene and justify that optimal conditions of these parameters give rise to broadband and wide angle invisibility. Presence of graphene turns out to shift the invisible wavelength range and to reduce the required gain amount considerably, based on its chemical potential and temperature. We substantiate that our results yield broadband reflectionless and invisible configurations for realistic materials of small refractive indices, usually around $\eta = 1$, and of small thickness sizes with graphene sheets of rather small temperatures and chemical potentials. Finally, we demonstrate that pure $\mathcal{PT}$-symmetric graphene yields invisibility at small temperatures and chemical potentials.

[1]  Satoshi Kawata,et al.  Nanophotonics , 2018, Encyclopedic Handbook of Integrated Optics.

[2]  C. Fu,et al.  Eigenvalues analysis for EM waves in anisotropic materials and its applications for unidirectional transmission and unidirectional invisibility , 2017 .

[3]  Ai-Xi Chen,et al.  Enhanced generation of higher-order sidebands in a single-quantum-dot-cavity system coupled to a PT -symmetric double cavity , 2017 .

[4]  Shanhui Fan,et al.  Unidirectional reflectionless light propagation at exceptional points , 2017 .

[5]  M. Sarısaman Unidirectional reflectionlessness and invisibility in the TE and TM modes of a P T -symmetric slab system , 2016, 1612.01423.

[6]  Shaowen Chen,et al.  Electron optics with p-n junctions in ballistic graphene , 2016, Science.

[7]  P. Schmelcher,et al.  Emitter and absorber assembly for multiple self-dual operation and directional transparency , 2016, 1609.04211.

[8]  N. Granpayeh,et al.  Wideband invisibility by using inhomogeneous metasurfaces of graphene nanodisks in the infrared regime , 2016 .

[9]  M. Ferreira,et al.  Impurity invisibility in graphene: Symmetry guidelines for the design of efficient sensors , 2016, 1606.06641.

[10]  A. Mostafazadeh,et al.  Spectral Singularities in the TE and TM modes of a PT-Symmetric Slab System: Optimal conditions for realizing a CPA-Laser , 2016, 1606.00412.

[11]  A. Mostafazadeh Perturbative Unidirectional Invisibility , 2015, 1507.02085.

[12]  A. Mostafazadeh Active Invisibility Cloaks in One Dimension , 2015, 1504.01756.

[13]  A. Mostafazadeh,et al.  Lasing-threshold condition for oblique TE and TM modes, spectral singularities, and coherent perfect absorption , 2015, 1501.06767.

[14]  A. P. Vinogradov,et al.  PT-symmetry in optics , 2014 .

[15]  S. Longhi A unidirectionally invisible P T ?> -symmetric complex crystal with arbitrary thickness , 2014, 1410.5278.

[16]  A. Mostafazadeh Unidirectionally invisible potentials as local building blocks of all scattering potentials , 2014 .

[17]  Yun Shen,et al.  Unidirectional invisibility in a two-layer non-PT-symmetric slab. , 2014, Optics express.

[18]  A. Mostafazadeh Addendum to "Unidirectionally invisible potentials as local building blocks of all scattering potentials" , 2014, 1407.1760.

[19]  A. Mostafazadeh Generalized unitarity and reciprocity relations for P T ?> -symmetric scattering potentials , 2014, 1405.4212.

[20]  Luis L. Sánchez-Soto,et al.  Invisibility and PT Symmetry: A Simple Geometrical Viewpoint , 2014, Symmetry.

[21]  Bikashkali Midya,et al.  Supersymmetry generated one-way invisible PT-symmetric optical crystals , 2014, 1401.4996.

[22]  A. Mostafazadeh Adiabatic approximation, semiclassical scattering, and unidirectional invisibility , 2014, 1401.4315.

[23]  A. Mostafazadeh Transfer matrices as nonunitary S matrices, multimode unidirectional invisibility, and perturbative inverse scattering , 2013, 1311.1619.

[24]  A. Mostafazadeh,et al.  Spectral Singularities in the Surface Modes of a Spherical Gain Medium , 2013, 1308.2897.

[25]  G. Della Valle,et al.  Invisible defects in complex crystals , 2013, 1306.0667.

[26]  A. Mostafazadeh,et al.  Spectral singularities and whispering gallery modes of a cylindrical gain medium , 2013, 1305.7436.

[27]  Hua Zhang,et al.  Graphene-based electrochemical sensors. , 2013, Small.

[28]  A. Alú,et al.  Invisibility and Cloaking Based on Scattering Cancellation , 2012, Advanced materials.

[29]  Ali Mostafazadeh,et al.  Invisibility and PT symmetry , 2012, 1206.0116.

[30]  A. Mostafazadeh,et al.  Optical spectral singularities and coherent perfect absorption in a two-layer spherical medium , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Qiyuan He,et al.  Graphene-based electronic sensors , 2012 .

[32]  S. Longhi Invisibility in -symmetric complex crystals , 2011, 1111.3448.

[33]  Yeshaiahu Fainman,et al.  Nonreciprocal Light Propagation in a Silicon Photonic Circuit , 2011, Science.

[34]  A. Mostafazadeh,et al.  Spectral singularities of a complex spherical barrier potential and their optical realization , 2011, 1107.1873.

[35]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[36]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[37]  Rory Stine,et al.  Real‐Time DNA Detection Using Reduced Graphene Oxide Field Effect Transistors , 2010, Advanced materials.

[38]  S. Longhi Invisibility in non-Hermitian tight-binding lattices , 2010, 1008.5306.

[39]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[40]  O. Yazyev Emergence of magnetism in graphene materials and nanostructures , 2010, 1004.2034.

[41]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[42]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[43]  G. Guseinov On the concept of spectral singularities , 2009 .

[44]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[45]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[46]  L. Ocola,et al.  Gas detection using low-temperature reduced graphene oxide sheets , 2009 .

[47]  A. Mostafazadeh Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. , 2009, Physical review letters.

[48]  Ali Mostafazadeh,et al.  Pseudo-Hermitian Representation of Quantum Mechanics , 2008, 0810.5643.

[49]  Zhongqing Wei,et al.  Reduced graphene oxide molecular sensors. , 2008, Nano letters.

[50]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[51]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[52]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[53]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006, cond-mat/0610630.

[54]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[55]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[56]  Dorje C. Brody,et al.  Must a Hamiltonian be Hermitian , 2003, hep-th/0303005.

[57]  B. Bagchi,et al.  sl(2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues , 2000, math-ph/0008020.

[58]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[59]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[60]  P. Kielanowski Geometric Methods in Physics , 2013 .

[61]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[62]  L. A. Falkovsky PHYSICS OF OUR DAYS: Optical properties of graphene and IV-VI semiconductors , 2008 .