Nanobodies Targeting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions

Rationale: A noninvasive tool allowing the detection of vulnerable atherosclerotic plaques is highly needed. By combining nanomolar affinities and fast blood clearance, nanobodies represent potential radiotracers for cardiovascular molecular imaging. Vascular cell adhesion molecule-1 (VCAM1) constitutes a relevant target for molecular imaging of atherosclerotic lesions. Objective: We aimed to generate, radiolabel, and evaluate anti-VCAM1 nanobodies for noninvasive detection of atherosclerotic lesions. Methods and Results: Ten anti-VCAM1 nanobodies were generated, radiolabeled with technetium-99m, and screened in vitro on mouse and human recombinant VCAM1 proteins and endothelial cells and in vivo in apolipoprotein E–deficient (ApoE−/−) mice. A nontargeting control nanobody was used in all experiments to demonstrate specificity. All nanobodies displayed nanomolar affinities for murine VCAM1. Flow cytometry analyses using human human umbilical vein endothelial cells indicated murine and human VCAM1 cross-reactivity for 6 of 10 nanobodies. The lead compound cAbVCAM1-5 was cross-reactive for human VCAM1 and exhibited high lesion-to-control (4.95±0.85), lesion-to-heart (8.30±1.11), and lesion-to-blood ratios (4.32±0.48) (P<0.05 versus control C57Bl/6J mice). Aortic arch atherosclerotic lesions of ApoE−/− mice were successfully identified by single-photon emission computed tomography imaging. 99mTc-cAbVCAM1-5 binding specificity was demonstrated by in vivo competition experiments. Autoradiography and immunohistochemistry further confirmed cAbVCAM1-5 uptake in VCAM1-positive lesions. Conclusions: The 99mTc-labeled, anti-VCAM1 nanobody cAbVCAM1-5 allowed noninvasive detection of VCAM1 expression and displayed mouse and human cross-reactivity. Therefore, this study demonstrates the potential of nanobodies as a new class of radiotracers for cardiovascular applications. The nanobody technology might evolve into an important research tool for targeted imaging of atherosclerotic lesions and has the potential for fast clinical translation.

[1]  Jakub Toczek,et al.  Nanobody-coupled microbubbles as novel molecular tracer. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[2]  W. Mali,et al.  Rapid Visualization of Human Tumor Xenografts through Optical Imaging with a Near-Infrared Fluorescent Anti–Epidermal Growth Factor Receptor Nanobody , 2012, Molecular imaging.

[3]  S. Muyldermans,et al.  Preclinical screening of anti‐HER2 nanobodies for molecular imaging of breast cancer , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[4]  U. Tuor,et al.  Small unilamellar vesicles: a platform technology for molecular imaging of brain tumors , 2011, Nanotechnology.

[5]  G. V. van Dongen,et al.  Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[6]  H. Saji,et al.  Tissue Factor Detection for Selectively Discriminating Unstable Plaques in an Atherosclerotic Rabbit Model , 2010, The Journal of Nuclear Medicine.

[7]  H. Saji,et al.  Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[8]  S. Muyldermans,et al.  In Vitro Analysis and In Vivo Tumor Targeting of a Humanized, Grafted Nanobody in Mice Using Pinhole SPECT/Micro-CT , 2010, Journal of Nuclear Medicine.

[9]  Jie Pan,et al.  Lack of apoE causes alteration of cytokines expression in young mice liver , 2010, Molecular Biology Reports.

[10]  H. Revets,et al.  The development of nanobodies for therapeutic applications. , 2009, Current opinion in investigational drugs.

[11]  Ralph Weissleder,et al.  18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. , 2009, JACC. Cardiovascular imaging.

[12]  J. Wykrzykowska,et al.  Imaging of Inflamed and Vulnerable Plaque in Coronary Arteries with 18F-FDG PET/CT in Patients with Suppression of Myocardial Uptake Using a Low-Carbohydrate, High-Fat Preparation , 2009, Journal of Nuclear Medicine.

[13]  J. Dimastromatteo,et al.  Pre-clinical and clinical evaluation of nuclear tracers for the molecular imaging of vulnerable atherosclerosis: an overview. , 2009, Current medicinal chemistry.

[14]  C. R. Leemans,et al.  Improved tumor targeting of anti–epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology , 2008, Molecular Cancer Therapeutics.

[15]  Christian Vanhove,et al.  Comparison of the Biodistribution and Tumor Targeting of Two 99mTc-Labeled Anti-EGFR Nanobodies in Mice, Using Pinhole SPECT/Micro-CT , 2008, Journal of Nuclear Medicine.

[16]  J. Lindner,et al.  Molecular Imaging of Inflammation in Atherosclerosis With Targeted Ultrasound Detection of Vascular Cell Adhesion Molecule-1 , 2007, Circulation.

[17]  D. Boturyn,et al.  Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  Ralph Weissleder,et al.  Noninvasive Vascular Cell Adhesion Molecule-1 Imaging Identifies Inflammatory Activation of Cells in Atherosclerosis , 2006, Circulation.

[19]  J. Knuuti,et al.  Non-specific binding of [18F]FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[20]  L. Wyns,et al.  Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. , 2005, Journal of molecular biology.

[21]  Zahi A Fayad,et al.  Atherothrombosis and high-risk plaque: part I: evolving concepts. , 2005, Journal of the American College of Cardiology.

[22]  A. Lew,et al.  Antigen targeted to secondary lymphoid organs via vascular cell adhesion molecule (VCAM) enhances an immune response. , 2003, Vaccine.

[23]  Howard T. Petrie,et al.  Characterization of Vascular Adhesion Molecules that may Facilitate Progenitor Homing in the Post-natal Mouse Thymus , 2003, Clinical & developmental immunology.

[24]  J. Pickard,et al.  Imaging Atherosclerotic Plaque Inflammation With [18F]-Fluorodeoxyglucose Positron Emission Tomography , 2002, Circulation.

[25]  S. Nilsson,et al.  Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. , 2001, Blood.

[26]  K. Ley,et al.  Adhesion molecules and atherogenesis. , 2001, Acta physiologica Scandinavica.

[27]  M. Cybulsky,et al.  Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. , 1999, Circulation research.

[28]  K. Williams,et al.  Atherosclerosis--an inflammatory disease. , 1999, The New England journal of medicine.

[29]  L. Wyns,et al.  Selection and identification of single domain antibody fragments from camel heavy‐chain antibodies , 1997, FEBS letters.

[30]  E. Shevach,et al.  Vascular cell adhesion molecule-1 is expressed by cortical thymic epithelial cells and mediates thymocyte adhesion. Implications for the function of alpha4beta1 (VLA4) integrin in T-cell development. , 1997, Blood.

[31]  M. A. Borrello,et al.  Differential Thy-1 expression by splenic fibroblasts defines functionally distinct subsets. , 1996, Cellular immunology.

[32]  C. Alpers,et al.  Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. , 1996, Circulation.

[33]  M. Ferguson,et al.  Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. , 1993, The Journal of clinical investigation.

[34]  R. Tizard,et al.  Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes , 1989, Cell.

[35]  B. Engelhardt,et al.  Immunobiology: Comprehensive analysis of lymph node stroma-expressed Ig superfamily members reveals redundant and nonredundant roles for ICAM-1, ICAM-2, and VCAM-1 in lymphocyte homing , 2012 .

[36]  Paul,et al.  Adhesion receptors on bone marrow stromal cells: in vivo expression of vascular cell adhesion molecule-1 by reticular cells and sinusoidal endothelium in normal and gamma-irradiated mice. , 1996, Blood.

[37]  C. E. van der Schoot,et al.  Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. , 1996, The American journal of pathology.

[38]  D. G. Osmond,et al.  Adhesion receptors on bone marrow stromal cells: in vivo expression of vascular cell adhesion molecule-1 by reticular cells and sinusoidal endothelium in normal and gamma-irradiated mice , 1996 .