Why do cellular proteins linked to K63‐polyubiquitin chains not associate with proteasomes?

[1]  F. Festy,et al.  The proteasomal de‐ubiquitinating enzyme POH1 promotes the double‐strand DNA break response , 2012, The EMBO journal.

[2]  R. Piper,et al.  How Ubiquitin Functions with ESCRTs , 2011, Traffic.

[3]  John Rush,et al.  Polyubiquitin Linkage Profiles in Three Models of Proteolytic Stress Suggest the Etiology of Alzheimer Disease* , 2011, The Journal of Biological Chemistry.

[4]  P. Lehner,et al.  HRD1 and UBE2J1 target misfolded MHC class I heavy chains for endoplasmic reticulum-associated degradation , 2011, Proceedings of the National Academy of Sciences.

[5]  A. Goldberg,et al.  ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. , 2010, Molecular cell.

[6]  Min Jae Lee,et al.  Enhancement of Proteasome Activity by a Small-Molecule Inhibitor of Usp14 , 2010, Nature.

[7]  J. Hurley,et al.  VHS domains of ESCRT‐0 cooperate in high‐avidity binding to polyubiquitinated cargo , 2010, The EMBO journal.

[8]  A. Goldberg,et al.  Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. , 2009, Molecular cell.

[9]  A. Jacobson,et al.  The Lysine 48 and Lysine 63 Ubiquitin Conjugates Are Processed Differently by the 26 S Proteasome* , 2009, The Journal of Biological Chemistry.

[10]  S. Gygi,et al.  S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains , 2009, The EMBO journal.

[11]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[12]  P. Lehner,et al.  The trafficking and regulation of membrane receptors by the RING-CH ubiquitin E3 ligases. , 2009, Experimental cell research.

[13]  P. Lehner,et al.  Viral avoidance and exploitation of the ubiquitin system , 2009, Nature Cell Biology.

[14]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[15]  S. Jentsch,et al.  Principles of ubiquitin and SUMO modifications in DNA repair , 2009, Nature.

[16]  S. Gygi,et al.  Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. , 2009, Biochemistry.

[17]  Troels Z. Kristiansen,et al.  K63‐specific deubiquitination by two JAMM/MPN+ complexes: BRISC‐associated Brcc36 and proteasomal Poh1 , 2009, The EMBO journal.

[18]  G. Hummer,et al.  Hybrid Structural Model of the Complete Human ESCRT‐0 Complex , 2009, Structure.

[19]  H. Yokosawa,et al.  Lysine 63‐linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome , 2009, The EMBO journal.

[20]  V. Schreiber,et al.  The expanding field of poly(ADP-ribosyl)ation reactions. ‘Protein Modifications: Beyond the Usual Suspects' Review Series , 2008, EMBO reports.

[21]  Christine Yu,et al.  Ubiquitin Chain Editing Revealed by Polyubiquitin Linkage-Specific Antibodies , 2008, Cell.

[22]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[23]  Ivan Dikic,et al.  Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction , 2008, Nature.

[24]  Ivan Dikic,et al.  Proteasome subunit Rpn13 is a novel ubiquitin receptor , 2008, Nature.

[25]  K. Cadwell,et al.  The Specificities of Kaposi's Sarcoma-Associated Herpesvirus-Encoded E3 Ubiquitin Ligases Are Determined by the Positions of Lysine or Cysteine Residues within the Intracytoplasmic Domains of Their Targets , 2008, Journal of Virology.

[26]  Steven P Gygi,et al.  Certain Pairs of Ubiquitin-conjugating Enzymes (E2s) and Ubiquitin-Protein Ligases (E3s) Synthesize Nondegradable Forked Ubiquitin Chains Containing All Possible Isopeptide Linkages* , 2007, Journal of Biological Chemistry.

[27]  Roger L. Williams,et al.  The emerging shape of the ESCRT machinery , 2007, Nature Reviews Molecular Cell Biology.

[28]  Li Chen,et al.  Evidence for distinct functions for human DNA repair factors hHR23A and hHR23B , 2006, FEBS letters.

[29]  P. Lehner,et al.  Lysine‐63‐linked ubiquitination is required for endolysosomal degradation of class I molecules , 2006, The EMBO journal.

[30]  S. Katiyar,et al.  Studies on the intracellular localization of hHR23B. , 2005, Biochemical and biophysical research communications.

[31]  Linda Hicke,et al.  Ubiquitin-binding domains , 2005, Nature Reviews Molecular Cell Biology.

[32]  Michael Assfalg,et al.  Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain. , 2005, Molecular cell.

[33]  E. J. Song,et al.  Human Fas-Associated Factor 1, Interacting with Ubiquitinated Proteins and Valosin-Containing Protein, Is Involved in the Ubiquitin-Proteasome Pathway , 2005, Molecular and Cellular Biology.

[34]  J. Hoeijmakers,et al.  Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. , 2004, DNA repair.

[35]  C. Pickart,et al.  Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. , 2004, Journal of molecular biology.

[36]  R. Deshaies,et al.  Multiubiquitin Chain Receptors Define a Layer of Substrate Selectivity in the Ubiquitin-Proteasome System , 2004, Cell.

[37]  D. Finley,et al.  Rad23 and Rpn10 Serve as Alternative Ubiquitin Receptors for the Proteasome* , 2004, Journal of Biological Chemistry.

[38]  W. Hong,et al.  Endofin Recruits TOM1 to Endosomes* , 2004, Journal of Biological Chemistry.

[39]  H. Yokosawa,et al.  Tom1, a VHS Domain-containing Protein, Interacts with Tollip, Ubiquitin, and Clathrin* , 2003, Journal of Biological Chemistry.

[40]  E. Friedberg,et al.  Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage (Version 6). , 2003, DNA repair.

[41]  C. Pickart,et al.  Rad23 Ubiquitin-associated Domains (UBA) Inhibit 26 S Proteasome-catalyzed Proteolysis by Sequestering Lysine 48-linked Polyubiquitin Chains* , 2003, The Journal of Biological Chemistry.

[42]  Li Chen,et al.  Rad23 Promotes the Targeting of Proteolytic Substrates to the Proteasome , 2002, Molecular and Cellular Biology.

[43]  P. Lehner,et al.  Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101‐dependent degradation , 2002, The EMBO journal.

[44]  J. Hoeijmakers,et al.  Developmental Defects and Male Sterility in Mice Lacking the Ubiquitin-Like DNA Repair Gene mHR23B , 2002, Molecular and Cellular Biology.

[45]  C. Pickart,et al.  In Vitro Assembly and Recognition of Lys-63 Polyubiquitin Chains* , 2001, The Journal of Biological Chemistry.

[46]  D. Pappin,et al.  A complex of mammalian Ufd1 and Npl4 links the AAA‐ATPase, p97, to ubiquitin and nuclear transport pathways , 2000, The EMBO journal.

[47]  P. Elliott,et al.  Proteasome inhibition measurements: clinical application. , 2000, Clinical chemistry.

[48]  Martin Rechsteiner,et al.  Recognition of the polyubiquitin proteolytic signal , 2000, The EMBO journal.

[49]  P. Howley,et al.  Identification of HHR23A as a Substrate for E6-associated Protein-mediated Ubiquitination* , 1999, The Journal of Biological Chemistry.

[50]  A. Goldberg,et al.  γ-lnterferon and expression of MHC genes regulate peptide hydrolysis by proteasomes , 1995, Nature.

[51]  Y. Saeki,et al.  Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. , 2005, Methods in enzymology.

[52]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[53]  A. Goldberg,et al.  Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. , 1993, Nature.

[54]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .