On Clustering Financial Time Series: A Need for Distances Between Dependent Random Variables
暂无分享,去创建一个
Frank Nielsen | Gautier Marti | Philippe Donnat | Sébastien Andler | F. Nielsen | Gautier Marti | Philippe Donnat | Sébastien Andler
[1] R. Nelsen,et al. On the relationship between Spearman's rho and Kendall's tau for pairs of continuous random variables , 2007 .
[2] Frank Nielsen,et al. A Proposal of a Methodological Framework with Experimental Guidelines to Investigate Clustering Stability on Financial Time Series , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).
[3] Le Song,et al. A Hilbert Space Embedding for Distributions , 2007, Discovery Science.
[4] Asuka Takatsu. Wasserstein geometry of Gaussian measures , 2011 .
[5] B. L. William Wong,et al. Clustering Techniques And their Effect on Portfolio Formation and Risk Analysis , 2014, DSMM'14.
[6] J. V. Ness,et al. Space-conserving agglomerative algorithms , 1996 .
[7] Fionn Murtagh,et al. Methods of Hierarchical Clustering , 2011, ArXiv.
[8] Sueli I. Rodrigues Costa,et al. Fisher information distance: a geometrical reading? , 2012, Discret. Appl. Math..
[9] Joachim M. Buhmann,et al. Stability-Based Validation of Clustering Solutions , 2004, Neural Computation.
[10] Deborah F. Swayne,et al. Grouping Multivariate Time Series : A Case Study , 2006 .
[11] Gautier Marti,et al. Toward a generic representation of random variables for machine learning , 2015, Pattern Recognit. Lett..
[12] R. Mantegna. Hierarchical structure in financial markets , 1998, cond-mat/9802256.
[13] Cyrus Shahabi,et al. A PCA-based similarity measure for multivariate time series , 2004, MMDB '04.
[14] Frank Nielsen,et al. Optimal copula transport for clustering multivariate time series , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[15] Mikhail Belkin,et al. Consistency of spectral clustering , 2008, 0804.0678.
[16] Frank Nielsen,et al. Clustering Financial Time Series: How Long Is Enough? , 2016, IJCAI.
[17] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[18] Roberto Bellotti,et al. Hausdorff Clustering of Financial Time Series , 2007 .
[19] Azadeh Khaleghi,et al. Consistent Algorithms for Clustering Time Series , 2016, J. Mach. Learn. Res..
[20] Moshe Shaked,et al. Linkages: A Tool for the Construction of Multivariate Distributions with Given Nonoverlapping Multivariate Marginals , 1996 .
[21] Paul Deheuvels,et al. An asymptotic decomposition for multivariate distribution-free tests of independence , 1981 .
[22] Fabrizio Lillo,et al. Shrinkage and spectral filtering of correlation matrices: a comparison via the Kullback-Leibler distance , 2007, 0710.0576.
[23] Christian Genest,et al. De l'impossibilité de construire des lois à marges multidimensionnelles données à partir de copules , 1995 .
[24] Jean-Philippe Bouchaud,et al. Financial Applications of Random Matrix Theory: Old Laces and New Pieces , 2005 .
[25] D. Pollard. Strong Consistency of $K$-Means Clustering , 1981 .
[26] J. Bouchaud,et al. RANDOM MATRIX THEORY AND FINANCIAL CORRELATIONS , 2000 .
[27] J. Bouchaud,et al. The eigenvectors of Gaussian matrices with an external source , 2014, 1412.7108.
[28] D. Seborg,et al. Clustering multivariate time‐series data , 2005 .
[29] Fabrizio Lillo,et al. Cluster analysis for portfolio optimization , 2005, physics/0507006.
[30] V. Plerou,et al. Random matrix approach to cross correlations in financial data. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[31] C. Atkinson. Rao's distance measure , 1981 .
[32] J. S. Marron,et al. Asymptotics of hierarchical clustering for growing dimension , 2014, J. Multivar. Anal..
[33] Yoshikazu Terada,et al. Strong Consistency of Reduced K‐means Clustering , 2012, 1212.4942.
[34] J. Hartigan. Consistency of Single Linkage for High-Density Clusters , 1981 .
[35] J. Bouchaud,et al. Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.
[36] Sivaraman Balakrishnan,et al. Efficient Active Algorithms for Hierarchical Clustering , 2012, ICML.
[37] Tso-Jung Yen,et al. Discussion on "Stability Selection" by Meinshausen and Buhlmann , 2010 .
[38] R. Mantegna,et al. An Introduction to Econophysics: Contents , 1999 .
[39] Rosario N. Mantegna,et al. Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .
[40] R. Cont. Empirical properties of asset returns: stylized facts and statistical issues , 2001 .
[41] Sivaraman Balakrishnan,et al. Noise Thresholds for Spectral Clustering , 2011, NIPS.
[42] Claudia Czado,et al. Model distances for vine copulas in high dimensions , 2015, Stat. Comput..
[43] Yoshikazu Terada. Strong consistency of factorial $$K$$K-means clustering , 2013 .
[44] Jean-Philippe Bouchaud,et al. Rotational Invariant Estimator for General Noisy Matrices , 2015, IEEE Transactions on Information Theory.
[45] M. Tumminello,et al. When do Improved Covariance Matrix Estimators Enhance Portfolio Optimization? An Empirical Comparative Study of Nine Estimators , 2010, 1004.4272.
[46] Sio Iong Ao,et al. CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs , 2005, Bioinform..
[47] Robert Tibshirani,et al. Hierarchical Clustering With Prototypes via Minimax Linkage , 2011, Journal of the American Statistical Association.
[48] Daniil Ryabko. Clustering processes , 2010, ICML.
[49] N. Meinshausen,et al. Stability selection , 2008, 0809.2932.
[50] Driss Aboutajdine,et al. Color Texture Classification Using Rao Distance between Multivariate Copula Based Models , 2011, CAIP.
[51] Bernhard Schölkopf,et al. Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions , 2009, NIPS.
[52] Azadeh Khaleghi,et al. Online Clustering of Processes , 2012, AISTATS.
[53] Ohad Shamir,et al. Cluster Stability for Finite Samples , 2007, NIPS.