Interhemispheric transcallosal connectivity between the left and right planum temporale predicts musicianship, performance in temporal speech processing, and functional specialization

[1]  Lutz Jäncke,et al.  Auditory Evoked Responses in Musicians during Passive Vowel Listening Are Modulated by Functional Connectivity between Bilateral Auditory-related Brain Regions , 2014, Journal of Cognitive Neuroscience.

[2]  Lutz Jäncke,et al.  Increased cortical surface area of the left planum temporale in musicians facilitates the categorization of phonetic and temporal speech sounds , 2013, Cortex.

[3]  Yaniv Assaf,et al.  Short-Term Learning Induces White Matter Plasticity in the Fornix , 2013, The Journal of Neuroscience.

[4]  Ellen Winner,et al.  Training-mediated leftward asymmetries during music processing: A cross-sectional and longitudinal fMRI analysis , 2013, NeuroImage.

[5]  Lutz Jäncke,et al.  The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study , 2013, Neuropsychologia.

[6]  R. Zatorre,et al.  Early Musical Training and White-Matter Plasticity in the Corpus Callosum: Evidence for a Sensitive Period , 2013, The Journal of Neuroscience.

[7]  Nancy Kanwisher,et al.  Sensitivity to musical structure in the human brain. , 2012, Journal of neurophysiology.

[8]  L. Jäncke,et al.  Musical expertise induces neuroplasticity of the planum temporale , 2012, Annals of the New York Academy of Sciences.

[9]  Anatol C. Kreitzer,et al.  Plasticity in gray and white: neuroimaging changes in brain structure during learning , 2012, Nature Neuroscience.

[10]  Lutz Jäncke,et al.  Neurofunctional and behavioral correlates of phonetic and temporal categorization in musically trained and untrained subjects. , 2012, Cerebral cortex.

[11]  T. Crow,et al.  The relationship between callosal axons and cortical neurons in the planum temporale: Alterations in schizophrenia , 2011, Neuroscience Research.

[12]  Lutz Jäncke,et al.  Processing of Voiced and Unvoiced Acoustic Stimuli in Musicians , 2011, Front. Psychology.

[13]  Lutz Jäncke,et al.  Intensive language training and attention modulate the involvement of fronto‐parietal regions during a non‐verbal auditory discrimination task , 2011, The European journal of neuroscience.

[14]  Psyche Loui,et al.  Effects of Practice and Experience on the Arcuate Fasciculus: Comparing Singers, Instrumentalists, and Non-Musicians , 2011, Front. Psychology.

[15]  Hsiao-Fang Liang,et al.  Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords , 2011, NeuroImage.

[16]  H. C. Li,et al.  Enhanced Cortical Connectivity in Absolute Pitch Musicians: A Model for Local Hyperconnectivity , 2011, Journal of Cognitive Neuroscience.

[17]  N. Kraus,et al.  Music training for the development of auditory skills , 2010, Nature Reviews Neuroscience.

[18]  C. Price The anatomy of language: a review of 100 fMRI studies published in 2009 , 2010, Annals of the New York Academy of Sciences.

[19]  Peng Yu,et al.  Altered white matter microstructure in the corpus callosum in Huntington's disease: Implications for cortical “disconnection” , 2010, NeuroImage.

[20]  Chun-Hung Yeh,et al.  Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography , 2009, Human brain mapping.

[21]  Alan C. Evans,et al.  Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. , 2009, Cerebral cortex.

[22]  Lutz Jäncke,et al.  White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study , 2009, NeuroImage.

[23]  G. Schlaug,et al.  Training‐induced Neuroplasticity in Young Children , 2009, Annals of the New York Academy of Sciences.

[24]  Kenneth Hugdahl,et al.  Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. , 2009, Cerebral cortex.

[25]  C. Wheeler-Kingshott,et al.  About “axial” and “radial” diffusivities , 2009, Magnetic resonance in medicine.

[26]  Alan C. Evans,et al.  Musical Training Shapes Structural Brain Development , 2009, The Journal of Neuroscience.

[27]  Nina Kraus,et al.  Relating Structure to Function: Heschl's Gyrus and Acoustic Processing , 2009, The Journal of Neuroscience.

[28]  Martin Meyer,et al.  Functions of the left and right posterior temporal lobes during segmental and suprasegmental speech perception , 2008 .

[29]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[30]  Eveline Geiser,et al.  Segmental processing in the human auditory dorsal stream , 2008, Brain Research.

[31]  Shu-Wei Sun,et al.  Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging , 2008, NeuroImage.

[32]  Richard S. J. Frackowiak,et al.  Endogenous Cortical Rhythms Determine Cerebral Specialization for Speech Perception and Production , 2007, Neuron.

[33]  A. Alexander,et al.  Diffusion tensor imaging of the brain , 2007, Neurotherapeutics.

[34]  Angela D. Friederici,et al.  Role of the Corpus Callosum in Speech Comprehension: Interfacing Syntax and Prosody , 2007, Neuron.

[35]  S. Mori,et al.  Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.

[36]  Jens Frahm,et al.  Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging , 2006, NeuroImage.

[37]  Katrin Amunts,et al.  White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability , 2006, NeuroImage.

[38]  Stefan Skare,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Extensive Blockinpiano Blockinpracticing Blockinhas Blockinregionally Specific Blockineffects Blockinon Blockinwhite Blockinmatter Blockindevelopment , 2022 .

[39]  André Brechmann,et al.  Hemispheric shifts of sound representation in auditory cortex with conceptual listening. , 2005, Cerebral cortex.

[40]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[41]  T Wüstenberg,et al.  Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study , 2004, The European journal of neuroscience.

[42]  Lutz Jäncke,et al.  A voxel-based approach to gray matter asymmetries , 2004, NeuroImage.

[43]  Nathalie Tzourio-Mazoyer,et al.  Hemispheric specialization for language , 2004, Brain Research Reviews.

[44]  Fabrice Crivello,et al.  Left planum temporale: an anatomical marker of left hemispheric specialization for language comprehension. , 2003, Brain research. Cognitive brain research.

[45]  David Poeppel,et al.  The analysis of speech in different temporal integration windows: cerebral lateralization as 'asymmetric sampling in time' , 2003, Speech Commun..

[46]  H. Pratt,et al.  High-resolution time course of hemispheric dominance revealed by low-resolution electromagnetic tomography , 2003, Clinical Neurophysiology.

[47]  G. Schlaug,et al.  Corpus callosum: musician and gender effects , 2003, Neuroreport.

[48]  H. Seldon,et al.  The left human speech-processing cortex is thinner but longer than the right , 2003, Laterality.

[49]  John Russell,et al.  Dysmyelination Revealed through MRI as Increased Radial (but Unchanged Axial) Diffusion of Water , 2002, NeuroImage.

[50]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[51]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[52]  T. Griffiths,et al.  The planum temporale as a computational hub , 2002, Trends in Neurosciences.

[53]  E. Altenmüller,et al.  The musician's brain as a model of neuroplasticity , 2002, Nature Reviews Neuroscience.

[54]  H. Scheich,et al.  Phonetic Perception and the Temporal Cortex , 2002, NeuroImage.

[55]  V. Schmithorst,et al.  Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study , 2002, Neuroscience Letters.

[56]  L. Jäncke,et al.  Does dichotic listening probe temporal lobe functions? , 2002, Neurology.

[57]  A Hakan Oztürk,et al.  Morphometric comparison of the human corpus callosum in professional musicians and non-musicians by using in vivo magnetic resonance imaging. , 2002, Journal of neuroradiology. Journal de neuroradiologie.

[58]  G. Schlaug,et al.  Absolute Pitch and Planum Temporale , 2001, NeuroImage.

[59]  R. Zatorre,et al.  Spectral and temporal processing in human auditory cortex. , 2001, Cerebral cortex.

[60]  P. Basser,et al.  Water Diffusion Changes in Wallerian Degeneration and Their Dependence on White Matter Architecture , 2000 .

[61]  T. Ohnishi,et al.  Functional anatomy of musical perception in musicians , 2001, NeuroImage.

[62]  G. Bartzokis,et al.  Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. , 2001, Archives of general psychiatry.

[63]  A. Schleicher,et al.  Mapping of Histologically Identified Long Fiber Tracts in Human Cerebral Hemispheres to the MRI Volume of a Reference Brain: Position and Spatial Variability of the Optic Radiation , 1999, NeuroImage.

[64]  A. David,et al.  The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance , 1999, Brain Research Reviews.

[65]  Y. Samson,et al.  Lateralization of Speech and Auditory Temporal Processing , 1998, Journal of Cognitive Neuroscience.

[66]  N. Tzourio,et al.  Functional Anatomy of Dominance for Speech Comprehension in Left Handers vs Right Handers , 1998, NeuroImage.

[67]  B Mazoyer,et al.  Left planum temporale surface correlates with functional dominance during story listening* , 1998, Neuroreport.

[68]  H. Steinmetz,et al.  Structure, Function and Cerebral Asymmetry: In Vivo Morphometry of the Planum Temporale , 1996, Neuroscience & Biobehavioral Reviews.

[69]  R E Snyder,et al.  Changes in water diffusion due to Wallerian degeneration in peripheral nerve , 1996, Magnetic resonance in medicine.

[70]  Steven L. Miller,et al.  Temporal Processing Deficits of Language-Learning Impaired Children Ameliorated by Training , 1996, Science.

[71]  R V Shannon,et al.  Speech Recognition with Primarily Temporal Cues , 1995, Science.

[72]  J. Staiger,et al.  Increased corpus callosum size in musicians , 1995, Neuropsychologia.

[73]  G. Schlaug,et al.  In vivo evidence of structural brain asymmetry in musicians , 1995, Science.

[74]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[75]  Lutz Jäncke,et al.  Anatomical left‐right asymmetry of language‐related temporal cortex is different in left‐ and right‐handers , 1991, Annals of neurology.

[76]  A. Galaburda,et al.  Individual variability in cortical organization: Its relationship to brain laterality and implications to function , 1990, Neuropsychologia.

[77]  G. D. Rosen,et al.  Interhemispheric connections differ between symmetrical and asymmetrical brain regions , 1989, Neuroscience.

[78]  H. Seldon Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions , 1981, Brain Research.

[79]  H. Seldon Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception , 1981, Brain Research.

[80]  M. Annett A classification of hand preference by association analysis. , 1970, British journal of psychology.

[81]  N. Geschwind,et al.  Human Brain: Left-Right Asymmetries in Temporal Speech Region , 1968, Science.

[82]  L. Lisker,et al.  Some Effects of Context On Voice Onset Time in English Stops , 1967, Language and speech.

[83]  Timothy Edward John Behrens,et al.  Diffusion MRI : from quantitative measurement to in vivo neuroanatomy , 2014 .

[84]  C. Beaulieu The Biological Basis of Diffusion Anisotropy , 2009 .

[85]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .

[86]  A. Blamire,et al.  Lack of asymmetry characterises the cerebellum in developmental dyslexia , 2001 .

[87]  A. Galaburda Asymmetries of cerebral neuroanatomy. , 1991, Ciba Foundation symposium.

[88]  L. Lisker,et al.  A Cross-Language Study of Voicing in Initial Stops: Acoustical Measurements , 1964 .