Extension Properties of Boolean Contact Algebras

We show that the class of Boolean contact algebras has the joint embedding property and the amalgamation property, and that the class of connected Boolean contact algebras has the joint embedding property but not the amalgamation property.

[1]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[2]  Ivo Düntsch,et al.  On the homogeneous countable Boolean contact algebra , 2013 .

[3]  Frank Wolter,et al.  Spatial Reasoning in RCC-8 with Boolean Region Terms , 2000, ECAI.

[4]  Antony Galton,et al.  The Mereotopology of Discrete Space , 1999, COSIT.

[5]  P. M. Weichsel THE KRONECKER PRODUCT OF GRAPHS , 1962 .

[6]  Ivo Düntsch,et al.  Region–based theory of discrete spaces: A proximity approach , 2007, Annals of Mathematics and Artificial Intelligence.

[7]  Bernhard Nebel,et al.  Qualitative Spatial Reasoning Using Constraint Calculi , 2007, Handbook of Spatial Logics.

[8]  Dimiter Vakarelov,et al.  Contact Algebras and Region-based Theory of Space: A Proximity Approach - I , 2006, Fundam. Informaticae.

[9]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[10]  Sanjiang Li,et al.  Generalized Region Connection Calculus , 2004, Artif. Intell..

[11]  John G. Stell,et al.  Boolean connection algebras: A new approach to the Region-Connection Calculus , 2000, Artif. Intell..

[12]  Michael Winter,et al.  The Lattice of Contact Relations on a Boolean Algebra , 2008, RelMiCS.

[13]  Ivo Düntsch,et al.  Axioms, Algebras and Topology , 2007, Handbook of Spatial Logics.

[14]  Georg Struth,et al.  Relations and Kleene Algebra in Computer Science, 10th International Conference on Relational Methods in Computer Science, and 5th International Conference on Applications of Kleene Algebra, RelMiCS/AKA 2008, Frauenwörth, Germany, April 7-11, 2008. Proceedings , 2008, RelMiCS.

[15]  Ivo Düntsch,et al.  A Proximity Approach to Some Region-Based Theories of Space , 2002, J. Appl. Non Class. Logics.

[16]  Johan van Benthem,et al.  Handbook of Spatial Logics , 2007 .

[17]  Manuel Bodirsky,et al.  RCC8 Is Polynomial on Networks of Bounded Treewidth , 2011, IJCAI.

[18]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[19]  Gert Sabidussi,et al.  Graph multiplication , 1959 .

[20]  Mingsheng Ying,et al.  Relational reasoning in the region connection calculus , 2005, ArXiv.