TGR5-mediated bile acid sensing controls glucose homeostasis.

[1]  G. Tsujimoto,et al.  Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120 , 2005, Nature Medicine.

[2]  Tanya Hansotia,et al.  Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. , 2007, The Journal of clinical investigation.

[3]  H. Matsushime,et al.  Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. , 2005, Biochemical and biophysical research communications.

[4]  Minimizing Variation Due to Genotype and Environment , 2006, Current protocols in molecular biology.

[5]  Ke Ma,et al.  Farnesoid X receptor is essential for normal glucose homeostasis. , 2006, The Journal of clinical investigation.

[6]  J. Auwerx,et al.  Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. , 2008, Cell metabolism.

[7]  Johan Auwerx,et al.  Molecular Field Analysis and 3D-Quantitative Structure—Activity Relationship Study (MFA 3D-QSAR) Unveil Novel Features of Bile Acid Recognition at TGR5. , 2008 .

[8]  D. Drucker,et al.  Characterization and functional role of voltage gated cation conductances in the glucagon‐like peptide‐1 secreting GLUTag cell line , 2005, The Journal of physiology.

[9]  Folkert Kuipers,et al.  The Farnesoid X Receptor Modulates Hepatic Carbohydrate Metabolism during the Fasting-Refeeding Transition* , 2005, Journal of Biological Chemistry.

[10]  J. Auwerx,et al.  Collection of Blood and Plasma from the Mouse , 2006, Current protocols in molecular biology.

[11]  J. Després,et al.  Abdominal obesity and metabolic syndrome , 2006, Nature.

[12]  Johan Auwerx,et al.  Evaluation of Energy Homeostasis , 2006, Current protocols in molecular biology.

[13]  J. Auwerx,et al.  Impaired pancreatic growth, β cell mass, and β cell function in E2F1 –/– mice , 2004 .

[14]  Colin G. Nichols,et al.  KATP channels as molecular sensors of cellular metabolism , 2006, Nature.

[15]  J. Auwerx,et al.  Compromised Intestinal Lipid Absorption in Mice with a Liver-Specific Deficiency of Liver Receptor Homolog 1 , 2007, Molecular and Cellular Biology.

[16]  P. Berggren,et al.  The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. , 2006, Endocrine reviews.

[17]  J. Auwerx,et al.  Endocrine functions of bile acids , 2006, The EMBO journal.

[18]  Takao Nakamura,et al.  Identification of membrane-type receptor for bile acids (M-BAR). , 2002, Biochemical and biophysical research communications.

[19]  Sander M Houten,et al.  Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. , 2004, The Journal of clinical investigation.

[20]  D. Drucker,et al.  The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes , 2006, The Lancet.

[21]  K. Einarsson,et al.  Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. , 1982, The Journal of clinical investigation.

[22]  J. Auwerx,et al.  Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation , 2006, Nature.

[23]  F. Reimann,et al.  Glucose-sensing in glucagon-like peptide-1-secreting cells. , 2002, Diabetes.

[24]  M. Itakura,et al.  Expression and distribution of Gpr119 in the pancreatic islets of mice and rats: predominant localization in pancreatic polypeptide-secreting PP-cells. , 2006, Biochemical and biophysical research communications.

[25]  J. Auwerx,et al.  Histopathology in Mouse Metabolic Investigations , 2007, Current Protocols in Molecular Biology.

[26]  Masataka Harada,et al.  A G Protein-coupled Receptor Responsive to Bile Acids* , 2003, The Journal of Biological Chemistry.

[27]  T. Brunner,et al.  Intestinal Epithelial Cells Synthesize Glucocorticoids and Regulate T Cell Activation , 2004, The Journal of experimental medicine.

[28]  C. Reynet,et al.  Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. , 2006, Cell metabolism.

[29]  J. Auwerx,et al.  Lipid and Bile Acid Analysis , 2006, Current protocols in molecular biology.

[30]  G. Tsujimoto,et al.  Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. , 2005, Biochemical and biophysical research communications.

[31]  Timothy M Willson,et al.  Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Auwerx,et al.  Nongenomic actions of bile acids. Synthesis and preliminary characterization of 23- and 6,23-alkyl-substituted bile acid derivatives as selective modulators for the G-protein coupled receptor TGR5. , 2007, Journal of medicinal chemistry.

[33]  Didier Bagnol,et al.  A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. , 2007, Endocrinology.

[34]  J. Auwerx,et al.  Dietary Manipulation of Mouse Metabolism , 2008, Current protocols in molecular biology.

[35]  D. Drucker The biology of incretin hormones. , 2006, Cell metabolism.

[36]  J. Auwerx,et al.  Impaired pancreatic growth, beta cell mass, and beta cell function in E2F1 (-/- )mice. , 2004, The Journal of clinical investigation.

[37]  J. Holst,et al.  Serum Bile Acids Are Higher in Humans With Prior Gastric Bypass: Potential Contribution to Improved Glucose and Lipid Metabolism , 2009, Obesity.

[38]  P. Edwards,et al.  FXR signaling in metabolic disease , 2008, FEBS letters.

[39]  A. M. Habib,et al.  Glucose Sensing in L Cells: A Primary Cell Study , 2008, Cell metabolism.

[40]  H. Edlund,et al.  Gpr40 Is Expressed in Enteroendocrine Cells and Mediates Free Fatty Acid Stimulation of Incretin Secretion , 2008, Diabetes.

[41]  J. Auwerx,et al.  Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. , 2008, Journal of medicinal chemistry.

[42]  Johan Auwerx,et al.  Targeting bile-acid signalling for metabolic diseases , 2008, Nature Reviews Drug Discovery.

[43]  Johan Auwerx,et al.  Evaluation of Glucose Homeostasis , 2007, Current protocols in molecular biology.

[44]  Ru Wei,et al.  Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity , 2008, Molecular systems biology.