RILEM TC QFS ‘quasibrittle fracture scaling and size effect’-final report

The report attempts a broad review of the problem of size effect or scaling of failure, which has recently come to the forefront of attention because of its importance for concrete and geotechnical engineering, geomechanics, arctic ice engineering, as well as in designing large load-bearing parts made of advanced ceramics and composites,e.g. for aircraft or ships. First the main results of Weibull statistical theory of random strength are briefly summarized and its applicability and limitations described. In this theory as well as plasticity, elasticity with a strength limit, and linear elastic fracture mechanics (LEFM), the size effect is a simple power law because no characteristic size or length is present. Attention is then focused on the deterministic size effect in quasibrittle materials which, because of the existence of a non-negligible material length characterizing the size of the fracture process zone, represents the bridging between the simple power-law size effects of plasticity and of LEFM. The energetic theory of quasibrittle size effect in the bridging region is explained and then a host of recent refinements, extensions and ramifications are discussed. Comments on other types of size effect, including that which might be associated with the fractal geometry of fracture, are also made. The historical development of the size effect theories is outlined and the recent trends of research are emphasized.RésuméCe rapport tente de passer en revue le problème de l'effet de taille ou d'échelle sur la rupture, qui est récemment devenu un point focal d'attention à cause de son importance pour les structures en béton, la géotechnique, la géoméchanique, l'étude des glaces arctiques ainsi que dans la conception de grandes pièces structurelles en céramiques ou composites modernes, pour l'industrie navale ou aéronautique par exemple. Tout d'abord, les résultats principaux de la théorie statistique de résistance aléatoire de Weibull, son domaine d'application et ses limitations sont décrits. Dans cette théorie, ainsi qu'en plasticité, élasticité avec une résistance limite et mécanique de la rupture linéaire élastique, l'effet de taille s'exprime seulement par une loi puissance puisqu'aucune longueur ou taille caractéristique n'est présente. L'attention se tourne ensuite sur l'effet de taille déterministe dans les matériaux quasi-fragiles qui, à cause de l'existence d'une longueur matérielle non-négligeable caractérisant la taille de la zone de rupture, représente le lien entre les simples lois puissance de la plasticité et de la mécanique de la rupture linéaire. On explique la théorie énergétique des effets de taille quasi-fragiles dans la région de transition. On discute ensuite une multitude de raffinement récents, extensions et ramifications. On fait également des commentaires sur d'autres types d'effets de taille, y compris ceux qui pourraient être associés avec la géométrie fractale des fissures. L'histoire du développement des théories de l'effet de taille est résumée et les tendances récentes de la recherche sont mises en relief.

[1]  B. J. Carter,et al.  Tensile fracture from circular cavities loaded in compression , 1992, International Journal of Fracture.

[2]  A. Carpinteri Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics , 1989 .

[3]  Z. Bažant,et al.  Drying creep of concrete: constitutive model and new experiments separating its mechanisms , 1994 .

[4]  Zdeněk P. Bažant,et al.  Size effect in concrete structures , 1994 .

[5]  Drahomír Novák,et al.  ENERGETIC-STATISTICAL SIZE EFFECT IN QUASIBRITTLE FAILURE AT CRACK INITIATION , 2000 .

[6]  W. Weibull,et al.  The phenomenon of rupture in solids , 1939 .

[7]  G. Zi,et al.  Eigenvalue method for computing size effect of cohesive cracks with residual stress, with application to kink-bands in composites , 2003 .

[8]  W. Weibull,et al.  Basic aspects of fatigue , 1956 .

[9]  H.-W. Reinhardt Maßstabseinfluß bei Schubversuchen im Licht der Bruchmechanik. , 1981 .

[10]  Zdeněk P. Bažant,et al.  Large-scale thermal bending fracture of sea ice plates , 1992 .

[11]  Ek P. Ba Scaling of quasibrittle fracture: asymptotic analysis , 1997 .

[12]  A. Carpinteri,et al.  Numerical analysis of catastrophic softening behaviour (snap-back instability) , 1989 .

[13]  Zdenek P. Bazant,et al.  Size Effect in Concrete Columns: Finite-Element Analysis with Microplane Model , 2001 .

[14]  Z. Bažant,et al.  Scaling of quasibrittle fracture: asymptotic analysis , 1997 .

[15]  P. Petersson Crack growth and development of fracture zones in plain concrete and similar materials , 1981 .

[16]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[17]  S. E. Swartz,et al.  Crack Propagation and Fracture of Plain Concrete Beams Subjected to Shear and Compression , 1991 .

[18]  Zdeněk P. Bažant,et al.  Size effect on compression strength of fiber composites failing by kink band propagation , 1999 .

[19]  A. Hillerborg The theoretical basis of a method to determine the fracture energyGF of concrete , 1985 .

[20]  Zdeněk P. Bažant,et al.  Cohesive Crack with Rate-Dependent Opening and Viscoelasticity: I. Mathematical Model and Scaling , 1997 .

[21]  Alberto Carpinteri,et al.  Complex fracture energy dissipation in concrete under different loading conditions , 1997 .

[22]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[23]  Bernard Budiansky,et al.  Mechanics of materials and material characterizationMicromechanics , 1983 .

[24]  Feodor M. Borodich,et al.  FRACTAL FRACTURE OF BRITTLE BODIES DURING COMPRESSION , 1992 .

[25]  Surendra P. Shah,et al.  Size-effect method for determining fracture energy and process zone size of concrete , 1990 .

[26]  B. W. Rosen,et al.  Mechanics of composite strengthening. , 1965 .

[27]  Olivier Coussy,et al.  Mechanics of porous continua , 1995 .

[28]  Z. Bažant,et al.  Stability of Cohesive Crack Model: Part I—Energy Principles , 1995 .

[29]  B. J. Carter Size and stress gradient effects on fracture around cavities , 1992 .

[30]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[31]  Claudio Ruggieri,et al.  A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach , 1996 .

[32]  E. Z. Lajtai,et al.  Fracture from compressive stress concentrations around elastic flaws , 1973 .

[33]  Hikaru Akiyama,et al.  EXPERIMENTAL STUDIES ON THE SHEAR STRENGTH OF LARGE REINFORCED CONCRETE BEAMS UNDER UNIFORMLY DISTRIBUTED LOAD , 1984 .

[34]  Zdenek P. Bazant,et al.  FRACTURING TRUSS MODEL: SIZE EFFECT IN SHEAR FAILURE OF REINFORCED CONCRETE , 1997 .

[35]  L. H. C. Tippett,et al.  ON THE EXTREME INDIVIDUALS AND THE RANGE OF SAMPLES TAKEN FROM A NORMAL POPULATION , 1925 .

[36]  Arnold D. Kerr,et al.  Bearing Capacity of Floating Ice Covers Subjected to Static, Moving, and Oscillatory Loads , 1996 .

[37]  Surendra P. Shah,et al.  Two Parameter Fracture Model for Concrete , 1985 .

[38]  Drahomír Novák,et al.  PROBABILISTIC NONLOCAL THEORY FOR QUASIBRITTLE FRACTURE INITIATION AND SIZE EFFECT. I: THEORY , 2000 .

[39]  Zdenek P. Bazant,et al.  Scaling of Sea Ice FracturePart I: Vertical Penetration , 2002 .

[40]  Zdenek P. Bazant,et al.  Instability, Ductility, and Size Effect in Strain-Softening Concrete , 1978 .

[41]  Alberto Carpinteri,et al.  Fractal nature of material microstructure and size effects on apparent mechanical properties , 1994 .

[42]  P. Kittl,et al.  Weivull's fracture statistics, or probabilistic strength of materials: state of the art , 1988 .

[43]  J. Mier,et al.  Experimental investigation of size effect in concrete and sandstone under uniaxial tension , 2000 .

[44]  Zdenek P. Bazant,et al.  Size Effect and Fracture Characteristics of Composite Laminates , 1996 .

[45]  Z. Bažant,et al.  Size Effect on Strength of Floating Sea Ice under Vertical Line Load , 2002 .

[46]  G. A. Webster,et al.  Weibull Stress Solutions for 2-D Cracks in elastic and Elastic-Plastic Materials , 1998 .

[47]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[48]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[49]  A. Carpinteri,et al.  Apparent tensile strength and fictitious fracture energy of concrete: a fractal geometry approach to related size effects , 1992 .

[50]  김동수,et al.  콘크리트 파괴에너지 결정에 관한 연구 = Determination of the fracture energy of concrete , 1986 .

[51]  E. Williams,et al.  Some observations of Leonardo, Galileo, Mariotte and others relative to size effect , 1957 .

[52]  Zdenek P. Bazant,et al.  Acoustic Emissions in Fracturing Sea Ice Plate Simulated by Particle System , 1998 .

[53]  Zdeněk P. Bažant,et al.  Fracture energy release and size effect in borehole breakout , 1993 .

[54]  Z. Bažant,et al.  Stability Of Structures , 1991 .

[55]  Gianluca Cusatis,et al.  Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. Theory , 2002 .

[56]  Alberto Carpinteri,et al.  Mechanical damage and crack growth in concrete , 1986 .

[57]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[58]  Christian Hellmich,et al.  Multisurface Chemoplasticity I: Material Model for Shotcrete , 1999 .

[59]  Joost Walravena,et al.  Size effects in short beams loaded in shear , 1994 .

[60]  Michele Brocca,et al.  Closure to “Size Effect in Concrete Columns: Finite-Element Analysis with Microplane Model” by Michele Brocca and Zdene˘k P. Bažant , 2003 .

[61]  R. C. Bradt,et al.  J‐Integral Measurements of the Fracture of 50% Alumina Refractories , 1980 .

[62]  A. Pineau,et al.  A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .

[63]  M. F. Kaplan Crack Propagation and the Fracture of Concrete , 1961 .

[64]  G. N. J. Kani,et al.  Basic Facts Concerning Shear Failure , 1966 .

[65]  Z. Bažant FRACTURE MECHANICS OF CONCRETE STRUCTURES , 1992 .

[66]  S. U. Bhat,et al.  Modeling of Size Effect in Ice Mechanics Using Fractal Concepts , 1990 .

[67]  M.R.A. van Vliet,et al.  Effect of strain gradients on the size effect of concrete in uniaxial tension , 1999 .

[68]  Z. Bažant,et al.  Concrete creep at variable humidity: constitutive law and mechanism , 1985 .

[69]  M. Elices,et al.  Cohesive cracks versus nonlocal models: Closing the gap , 1993 .

[70]  K. Trustrum,et al.  Statistical approach to brittle fracture , 1977 .

[71]  Zdenek P. Bazant,et al.  Scaling of Structural Failure , 1997 .

[72]  Yunping Xi,et al.  Statistical Size Effect in Quasi‐Brittle Structures: II. Nonlocal Theory , 1991 .

[73]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[74]  P. F. Walsh Crack initiation in plain concrete , 1976 .

[75]  N. Fleck,et al.  On kink-band propagation in fiber composites , 1998 .

[76]  Surendra P. Shah,et al.  Fracture mechanics of concrete , 1995 .

[77]  Rilem Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams , 1985 .

[78]  M. Fréchet Sur la loi de probabilité de l'écart maximum , 1928 .

[79]  Masanori Izumi,et al.  A stochastic theory for concrete fracture , 1977 .

[80]  L. Vinci The notebooks of Leonardo da Vinci. , 1952 .

[81]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[82]  A. S. Argon,et al.  Fracture of Composites , 1972 .

[83]  J. P. Dempsey,et al.  Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, N.W.T. , 1999 .

[84]  Jean-Michel Torrenti,et al.  Modeling Concrete Shrinkage under Variable Ambient Conditions , 1999 .

[85]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[86]  Alberto Carpinteri,et al.  Size effects on concrete fracture energy: dimensional transition from order to disorder , 1996 .

[87]  D. Sodhi,et al.  SIZE EFFECT IN PENETRATION OF SEA ICE PLATE WITH PART-THROUGH CRACKS. I: THEORY. II: RESULTS. DISCUSSIONS AND CLOSURE , 2000 .

[88]  Zdenek P. Bazant,et al.  Scaling laws in mechanics of failure , 1993 .

[89]  P. E. Roelfstra,et al.  Le béton numérique , 1985 .

[90]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[91]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[92]  A. Carpinteri Scaling laws and renormalization groups for strength and toughness of disordered materials , 1994 .

[93]  Zdeněk P. Bažant,et al.  Choice of standard fracture test for concrete and its statistical evaluation , 2002 .

[94]  Mohammad Taghi Kazemi,et al.  Size Effect in Fracture of Ceramics and Its Use To Determine Fracture Energy and Effective Process Zone Length , 1990 .

[95]  J. C. Walraven,et al.  Size effects : Their nature and their recognition in building codes , 1995 .

[96]  Alberto Carpinteri,et al.  Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder , 1995 .

[97]  Anthony G. Evans,et al.  A General Approach for the Statistical Analysis of Multiaxial Fracture , 1978 .

[98]  F. H. Wittmann,et al.  Numerical Investigations on Damage in Cementitious Composites under Combined Drying Shrinkage and Mechanical Load , 2001 .

[99]  K. K. Strelov,et al.  The significance of non-elastic deformation in the fracture of heterogeneous ceramic materials , 1978 .

[100]  M.R.A. van Vliet,et al.  Influence of microstructure of concrete on size/scale effects in tensile fracture , 2003 .

[101]  Z. P. Bažant,et al.  Stability of Elastic, Anelastic, and Disintegrating Structures: A Conspectus of Main Results , 2000 .

[102]  Zdeněk P. Bažant,et al.  Probability distribution of energetic-statistical size effect in quasibrittle fracture , 2004 .

[103]  Guenther E. Frankenstein,et al.  Load test data for lake ice sheets , 1963 .

[104]  Alberto Carpinteri,et al.  Multifractal scaling law for the nominal strength variation of concrete structures , 1993 .

[105]  Leonid I. Slepyan,et al.  Radial cracking with closure , 1995 .

[106]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[107]  A. Carpinteri,et al.  Multifractal scaling law for the fracture energy variation of concrete structures , 1995 .

[108]  Alberto Carpinteri,et al.  A new explanation for size effects on the flexural strength of concrete , 1997 .

[109]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[110]  Z. Bažant,et al.  Determination of Fracture Energy from Size Effect and Brittleness Number , 1987 .

[111]  Z. Bažant,et al.  Scaling of structural strength , 2003 .

[112]  Alberto Carpinteri,et al.  Scale dependence of tensile strength of concrete specimens: a multifractal approach , 1998 .

[113]  Xiaozhi Hu,et al.  Boundary effect on concrete fracture and non-constant fracture energy distribution , 2003 .

[114]  Zdenek P. Bazant,et al.  Size effect in penetration of sea ice plate with part-through cracks. I : Theory , 1998 .

[115]  Devinder S. Sodhi,et al.  BREAKTHROUGH LOADS OF FLOATING ICE SHEETS , 1995 .

[116]  A. M. Freudenthal,et al.  Physical and Statistical Aspects of Fatigue , 1956 .

[117]  M. Elices,et al.  A general bilinear fit for the softening curve of concrete , 1994 .

[118]  Z. P. Bažant,et al.  Size effect on structural strength: a review , 1999 .

[119]  Peter Marti,et al.  Size Effect in Double-Punch Tests on Concrete Cylinders , 1989 .

[120]  Z. Bažant,et al.  Failure of slender and stocky reinforced concrete columns: tests of size effect , 1994 .

[121]  Alberto Carpinteri,et al.  Static and energetic fracture parameters for rocks and concretes , 1981 .

[122]  P. Kittl,et al.  Size effect on fracture strength in the probabilistic strength of materials , 1990 .

[123]  Alberto Carpinteri,et al.  Crack-resistance behavior as a consequence of self-similar fracture topologies , 1996 .

[124]  Zdenek P. Bazant,et al.  Size effect on diagonal shear failure of beams without stirrups , 1991 .

[125]  G. Zi,et al.  Size effect law and fracture mechanics of the triggering of dry snow slab avalanches , 2003 .

[126]  Z. Bažant,et al.  FRACTURE PROPERTIES AND BRITTLENESSS OF HIGH-STRENGTH CONCRETE , 1990 .

[127]  Drahomír Novák,et al.  PROBABILISTIC NONLOCAL THEORY FOR QUASIBRITTLE FRACTURE INITIATION AND SIZE EFFECT. II: APPLICATION , 2000 .

[128]  P. F. Walsh FRACTURE OF PLAIN CONCRETE , 1972 .

[129]  Alberto Carpinteri,et al.  Influence of material parameters and geometry on cohesive crack propagation , 1985 .

[130]  Michael R Wisnom,et al.  The Relationship between Tensile and Flexural Strength of Unidirectional Composites , 1992 .

[131]  Alberto Carpinteri,et al.  Interpretation of the Griffith Instability as a Bifurcation of the Global Equilibrium , 1985 .