Parallel numerical optimization for fast adaptive nonlinear moving horizon estimation

This paper proposes a novel strategy using parallel optimization computations for nonlinear moving horizon state estimation, and parameter identification problems of dynamic systems. The parallelization is based on the multi-point derivative-based Gauss-Newton search, as one of the most efficient algorithms for the nonlinear least-square problems. A numerical experiment is performed to demonstrate the parallel computations with the comparison to sequential computations.

[1]  O. Mangasarian Parallel Gradient Distribution in Unconstrained Optimization , 1995 .

[2]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[3]  Claudia A. Sagastizábal,et al.  Parallel Variable Distribution for Constrained Optimization , 2002, Comput. Optim. Appl..

[4]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[5]  John N. Tsitsiklis,et al.  Partial Solutions Manual Parallel and Distributed Computation : Numerical Methods , 1997 .

[6]  M. A. Luersen,et al.  Globalization and Parallelization of Nelder-Mead and Powell Optimization Methods , 2008 .

[7]  Tor Arne Johansen,et al.  Moving Horizon Observer for vibration dynamics with plant uncertainties in nanopositioning system estimation , 2012, 2012 American Control Conference (ACC).

[8]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[9]  Rosemary A. Renaut,et al.  Parallel Multisplittings for Optimization , 1995, Parallel Algorithms Appl..

[10]  Tor Arne Johansen,et al.  Moving horizon observer with regularisation for detectable systems without persistence of excitation , 2011, Int. J. Control.

[11]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[12]  Masao Fukushima,et al.  Parallel Variable Transformation in Unconstrained Optimization , 1998, SIAM J. Optim..

[13]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[14]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Marco Antonio Luersen,et al.  Globalized Nelder-Mead method for engineering optimization , 2002 .

[17]  Paul E. Plassmann,et al.  A Parallel Nonlinear Least-Squares Solver: Theoretical Analysis and Numerical Results , 1992, SIAM J. Sci. Comput..

[18]  Matthew Wiswall,et al.  A Parallel Implementation of the Simplex Function Minimization Routine , 2007 .

[19]  Giorgio Battistelli,et al.  Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes , 2008, Autom..

[20]  Virginia Torczon,et al.  On the Convergence of the Multidirectional Search Algorithm , 1991, SIAM J. Optim..

[21]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[22]  Michael C. Ferris,et al.  Parallel Variable Distribution , 1994, SIAM J. Optim..

[23]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.