On Sampling Theorem, Wavelets, and

[1]  R. L. Stens,et al.  Sampling Theory for not Necessarily Band-Limited Functions: A Historical Overview , 1992, SIAM Rev..

[2]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[3]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[4]  J. Benedetto Irregular sampling and frames , 1993 .

[5]  Martin Vetterli,et al.  Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..

[6]  Gilbert G. Walter,et al.  A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.

[7]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[8]  J. R. Higgins,et al.  Five short stories about the cardinal series , 1985 .

[9]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[11]  P. P. Vaidyanathan,et al.  Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial , 1990, Proc. IEEE.

[12]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[13]  F. Hlawatsch,et al.  Linear and quadratic time-frequency signal representations , 1992, IEEE Signal Processing Magazine.

[14]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .