Hierarchicalfuzzylogicsystemsareincreasinglyappliedtosolvecomplexproblems.Thereisaneed forastructuredandmethodologicalapproachforthedesignanddevelopmentofhierarchicalfuzzy logicsystems.Inthispaperareviewofamethoddevelopedbytheauthorfordesignanddevelopment ofhierarchicalfuzzylogicsystemsisconsidered.Theproposedmethodisbasedontheintegration ofgeneticalgorithmsandfuzzylogictoprovideanintegratedknowledgebaseformodelling,control andprediction. Issues related to thedesignandconstructionofhierarchical fuzzy logic systems usingseveralapplicationsareconsideredandmethodsforthedecompositionofcomplexsystems intohierarchicalfuzzylogicsystemsareproposed.Decompositionandconversionofsystemsinto hierarchicalfuzzylogicsystemsreducesthenumberoffuzzyrulesandimprovesthelearningspeed forsuchsystems.Applicationareasconsideredare:thepredictionofinterestrateandhierarchical roboticcontrol.Theaimofthismanuscriptistoreviewandhighlighttheresearchworkcompletedin theareaofhierarchicalfuzzylogicsystembytheauthor.Thepapercanbenefitresearchersinterested intheapplicationofhierarchicalfuzzylogicsystemsinmodelling,controlandprediction. KeywoRDS Control, Genetic Algorithms and Learning, Hierarchical Fuzzy Logic Systems, Modelling, Prediction INTRoDUCTIoN Theproblemofcontrollinguncertaindynamicsystemswhicharesubjecttoexternaldisturbances, uncertaintyandsheercomplexity isofconsiderable interest.Conventionalmodellingapproaches employmathematicalmodelsandexaminethesystem’sevolutionanditscontrol.Suchapproaches arenotcompletelysuccessfulwhenappliedtolargenon-linearcomplexsystems.Thesemodelswork wellprovidedthesystemmeettherequirementandassumptionofsynthesistechniques.Howeverdue touncertaintyandsheercomplexityoftheactualdynamicsystem,itisverydifficulttoensurethat themathematicalmodeldoesnotbreakdown(Mohammadian&Stonier,1995). Progressinsolvingtheseproblemshasbeenwiththeaidofnewadvancedhigh-speedcomputers and theapplicationofartificial intelligenceparadigms,particularlyneuralnetworks, fuzzy logic systemsandevolutionaryalgorithms.Fuzzylogicsystemshavebeensuccessfullyappliedintheplace ofthecomplexmathematicalsystemsandtheyhavenumerouspracticalapplicationsinmodelling,
[1]
E. Cox.
Adaptive fuzzy systems
,
1993,
IEEE Spectrum.
[2]
M. Mohammadian,et al.
Adaptive two layer fuzzy control of a mobile robot system
,
1995,
Proceedings of 1995 IEEE International Conference on Evolutionary Computation.
[3]
Ke Zeng,et al.
A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators
,
2000,
IEEE Trans. Fuzzy Syst..
[4]
Hani Hagras,et al.
A Behaviour Based Hierarchical Fuzzy Control Architecture For Agricultural Real Time Autonomous Mobile Robots
,
1998
.
[5]
D. Ruelle.
Chaotic evolution and strange attractors : the statistical analysis of time series for deterministic nonlinear systems
,
1989
.
[6]
Jun Zhou,et al.
Adaptive hierarchical fuzzy controller
,
1993,
IEEE Trans. Syst. Man Cybern..
[7]
P. J. Thomas,et al.
Hierarchical fuzzy control in robot soccer using evolving algorithms
,
2003,
The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[8]
Masoud Mohammadian,et al.
An adaptive hierarchical fuzzy logic system for modelling of financial systems
,
2004,
Intell. Syst. Account. Finance Manag..
[9]
Mohamed Mohideen Anver,et al.
Design of a hierarchical fuzzy filter for removal of heavy impulse noise from corrupted images
,
2002,
7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..
[10]
Mohamed Mohideen Anver,et al.
A Multi-Layered Fuzzy Image Filter for Removing Impulse Noise
,
2002,
ISCA Conference on Intelligent Systems.
[11]
Francisco Herrera,et al.
Genetic Fuzzy Systems - Evolutionary Tuning and Learning of Fuzzy Knowledge Bases
,
2002,
Advances in Fuzzy Systems - Applications and Theory.
[12]
Hani Hagras,et al.
Online Learning and Adaptation of Autonomous Mobile Robots for Sustainable Agriculture
,
2002,
Auton. Robots.
[13]
Lotfi A. Zadeh,et al.
Fuzzy Sets
,
1996,
Inf. Control..
[14]
Francisco Herrera,et al.
Linguistic modeling by hierarchical systems of linguistic rules
,
2002,
IEEE Trans. Fuzzy Syst..