Microstructure, Properties and Strengthening Mechanism of Cu-Tib2-Al2o3 Composite Prepared by Liquid Phase In-Situ Reaction Casting

[1]  Qiu Xu,et al.  Research status and development trend of preparation technology of ceramic particle dispersion strengthened copper-matrix composites , 2020 .

[2]  S. Pasebani,et al.  Selective laser melting of austenitic oxide dispersion strengthened steel: Processing, microstructural evolution and strengthening mechanisms , 2020 .

[3]  Zhou Li,et al.  Microstructure and properties of Cu-10 wt%Fe alloy produced by double melt mixed casting and multi-stage thermomechanical treatment , 2020 .

[4]  M. S. Abd-Elwahed,et al.  Correlation between micro/nano-structure, mechanical and tribological properties of copper-zirconia nanocomposites , 2020 .

[5]  Jiang Li,et al.  Microstructure evolution and properties of a quaternary Cu–Ni–Co–Si alloy with high strength and conductivity , 2019, Materials Science and Engineering: A.

[6]  F. Shan,et al.  Effect of La2O3 addition on copper matrix composites reinforced with Al2O3 ceramic particles , 2019, Materials Research Express.

[7]  Jun Wang,et al.  A novel way for fabricating ultrafine grained Cu-4.5 vol% Al2O3 composite with high strength and electrical conductivity , 2019, Materials Characterization.

[8]  Wei Wang,et al.  Microstructure and Properties of a Novel Cu–Ni–Co–Si–Mg Alloy with Super-high Strength and Conductivity , 2019, Materials Science and Engineering: A.

[9]  Jiang Yanbin,et al.  Composition design, phase transition and fabrication of copper alloys with high strength and electrical conductivity , 2019 .

[10]  M. R. Dashtbayazi,et al.  A new method for severe plastic deformation of the copper sheets , 2018, Materials Science and Engineering: A.

[11]  Jun Sun,et al.  Correlations between microstructures and properties of Cu-Ni-Si-Cr alloy , 2018, Materials Science and Engineering: A.

[12]  Fang Wang,et al.  Microstructure and mechanical properties of Al-TiB2/TiC in situ composites improved via hot rolling , 2017 .

[13]  Zhou Li,et al.  Characterization of Dispersion Strengthened Copper Alloy Prepared by Internal Oxidation Combined with Mechanical Alloying , 2017, Journal of Materials Engineering and Performance.

[14]  Zonghan Xie,et al.  Processing and characterization of in-situ ultrafine TiB2-Cu composites from Ti-B-Cu system , 2017 .

[15]  Yonglin Kang,et al.  Mechanical properties optimization of a Cu–Be–Co–Ni alloy by precipitation design , 2017 .

[16]  D. Song,et al.  Microstructure and properties of in-situ synthesized Cu-1 wt%TiC alloy followed by ECAP and post-annealing , 2016 .

[17]  Swadesh Kumar Singh,et al.  Constrained groove pressing for sheet metal processing , 2016 .

[18]  Yanfei Gao,et al.  Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys , 2016 .

[19]  Xuehui Zhang,et al.  Investigation on microstructure and properties of Cu–Al2O3 composites fabricated by a novel in-situ reactive synthesis , 2016 .

[20]  K. An,et al.  A precipitation-hardened high-entropy alloy with outstanding tensile properties , 2016 .

[21]  Wei Wang,et al.  In situ synthesis of TiB2 particulate reinforced copper matrix composite with a rotating magnetic field , 2015 .

[22]  Yi Wu,et al.  Mechanical properties of in-situ TiB2/A356 composites , 2014 .

[23]  Marta Ziemnicka-Sylwester The Cu matrix cermets remarkably strengthened by TiB2 “in situ” synthesized via self-propagating high temperature synthesis , 2014 .

[24]  M. Guo,et al.  Synthesis of nano TiB2 particles in copper matrix by in situ reaction of double-beam melts , 2008 .

[25]  X. Bian,et al.  Microstructure and mechanical properties of in situ synthesized (TiB2 + Al2O3)/Al–Cu composites , 2007 .

[26]  C. Maurice,et al.  The role of shear banding on deformation texture in low stacking fault energy metals as characterized on model Ag crystals , 2007 .

[27]  Z. Zhang,et al.  Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength , 2006 .

[28]  M. Heilmaier,et al.  Microstructure and room temperature hardening of ultra-fine-grained oxide-dispersion strengthened copper prepared by cryomilling , 2004 .

[29]  N. Hansen,et al.  Hall–Petch relation and boundary strengthening , 2004 .

[30]  Ping Liu,et al.  Internal oxidation of dilute Cu–Al alloy powers with oxidant of Cu2O , 2004 .

[31]  J. Tu,et al.  Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing , 2002 .

[32]  N. Hansen,et al.  Microstructure and strength of nickel at large strains , 2000 .

[33]  Q. Liu,et al.  Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium , 1998 .

[34]  S. Ahn,et al.  The influence of reinforced particle fracture on strengthening of spray formed Cu-TiB2 composite , 1998 .

[35]  M. Fine,et al.  The systems-based design of high-strength, high-conductivity alloys , 1997 .

[36]  J. N. Pratt,et al.  Metallurgical Thermochemistry , 1967, Nature.

[37]  P. Drude Zur Elektronentheorie der Metalle , 1900 .