OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.
暂无分享,去创建一个
Khanh Dao Duc | Miaoyan Wang | Jonathan Fischer | Yun S. Song | Yun S Song | K. D. Duc | Miaoyan Wang | Jonathan Fischer
[1] Sheng-Long Hu. Relations of the Nuclear Norms of a Tensor and its Matrix Flattenings , 2014, 1412.2443.
[2] Elina Robeva,et al. Orthogonal Decomposition of Symmetric Tensors , 2014, SIAM J. Matrix Anal. Appl..
[3] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[4] Demetri Terzopoulos,et al. Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.
[5] Peter D. Hoff,et al. MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA. , 2014, The annals of applied statistics.
[6] Shmuel Friedland,et al. Nuclear norm of higher-order tensors , 2014, Math. Comput..
[7] Jieping Ye,et al. Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..
[8] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[9] Jimeng Sun,et al. Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.
[10] B. Everitt,et al. Three-Mode Principal Component Analysis. , 1986 .
[11] Anima Anandkumar,et al. Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..
[12] Yun S. Song,et al. Orthogonal Tensor Decompositions via Two-Mode Higher-Order SVD (HOSVD) , 2016, ArXiv.
[13] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[14] P. McCullagh. Tensor notation and cumulants of polynomials , 1984 .
[15] Ryota Tomioka,et al. Spectral norm of random tensors , 2014, 1407.1870.
[16] Ryota Tomioka,et al. Estimation of low-rank tensors via convex optimization , 2010, 1010.0789.
[17] Charles Van Loan,et al. Block Tensor Unfoldings , 2011, SIAM J. Matrix Anal. Appl..
[18] Yaoliang Yu,et al. Approximate Low-Rank Tensor Learning , 2014 .
[19] Percy Liang,et al. Tensor Factorization via Matrix Factorization , 2015, AISTATS.
[20] T. Kolda. Multilinear operators for higher-order decompositions , 2006 .
[21] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[22] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[23] Jean-Francois Cardoso,et al. Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem , 1990, International Conference on Acoustics, Speech, and Signal Processing.
[24] Ming Yuan,et al. On Tensor Completion via Nuclear Norm Minimization , 2014, Foundations of Computational Mathematics.
[25] G. Golub,et al. A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies , 2007, Proceedings of the National Academy of Sciences.
[26] Shmuel Friedland,et al. The Computational Complexity of Duality , 2016, SIAM J. Optim..
[27] Pieter M. Kroonenberg,et al. Three-mode principal component analysis : theory and applications , 1983 .
[28] Andrea Montanari,et al. A statistical model for tensor PCA , 2014, NIPS.
[29] Hans-Peter Kriegel,et al. A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.
[30] Mohammed J. Zaki,et al. TRICLUSTER: an effective algorithm for mining coherent clusters in 3D microarray data , 2005, SIGMOD '05.
[31] Shmuel Friedland,et al. Computational Complexity of Tensor Nuclear Norm , 2014, ArXiv.
[32] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[33] Bo Huang,et al. Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery , 2013, ICML.