Magnesium-Based Bioresorbable Stent Materials: Review of Reviews

[1]  F. Witte,et al.  Biodegradable Metals , 2018, Biomaterials Science.

[2]  J. Drelich,et al.  Zinc-based alloys for degradable vascular stent applications. , 2018, Acta biomaterialia.

[3]  M. Dargusch,et al.  Building towards a standardised approach to biocorrosion studies: a review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion , 2018, Science China Materials.

[4]  M. Koç,et al.  Review of magnesium-based biomaterials and their applications , 2018 .

[5]  M. Maitz,et al.  In vitro and in vivo cytocompatibility evaluation of biodegradable magnesium-based stents: a review , 2018, Science China Materials.

[6]  Huinan Liu,et al.  Nanomaterials for treating cardiovascular diseases: A review , 2017, Bioactive materials.

[7]  Youngmee Jung,et al.  Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. , 2017, Acta biomaterialia.

[8]  N. Birbilis,et al.  Fundamentals and advances in magnesium alloy corrosion , 2017 .

[9]  K. Park,et al.  Bioresorbable Vascular Scaffolds - Are We Facing a Time of Crisis or One of Breakthrough? , 2017, Circulation journal : official journal of the Japanese Circulation Society.

[10]  Jia Pei,et al.  A promising biodegradable magnesium alloy suitable for clinical vascular stent application , 2017, Scientific Reports.

[11]  S. Venkatraman,et al.  Bioresorbable stents: Current and upcoming bioresorbable technologies. , 2017, International journal of cardiology.

[12]  James F Curtin,et al.  Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. , 2016, Materials science & engineering. C, Materials for biological applications.

[13]  Yufeng Zheng,et al.  Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. , 2016, Acta biomaterialia.

[14]  Yufeng Zheng,et al.  A review on biodegradable materials for cardiovascular stent application , 2016, Frontiers of Materials Science.

[15]  P. Serruys,et al.  Bioresorbable scaffold - A magic bullet for the treatment of coronary artery disease? , 2016, International journal of cardiology.

[16]  D. Capodanno Bioresorbable Scaffolds: Clinical Outcomes and Considerations. , 2016, Interventional cardiology clinics.

[17]  Patrick K. Bowen,et al.  Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn‐Alloys , 2016, Advanced healthcare materials.

[18]  Yufeng Zheng,et al.  Recent advances in bulk metallic glasses for biomedical applications. , 2016, Acta biomaterialia.

[19]  P. Serruys,et al.  Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention , 2016, BMC Cardiovascular Disorders.

[20]  H. Zafar,et al.  Coronary Stent Materials and Coatings: A Technology and Performance Update , 2016, Annals of Biomedical Engineering.

[21]  Caoimhe A. Sweeney,et al.  A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents , 2015, Annals of Biomedical Engineering.

[22]  Alexandre Barna,et al.  Fully bioresorbable drug-eluting coronary scaffolds: A review. , 2015, Archives of cardiovascular diseases.

[23]  Shervin Eslami Harandi,et al.  A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications , 2015 .

[24]  S. Schubert,et al.  Magnesium stents – fundamentals, biological implications and applications beyond coronary arteries , 2015 .

[25]  A. Boccaccini,et al.  Iron and iron-based alloys for temporary cardiovascular applications , 2015, Journal of Materials Science: Materials in Medicine.

[26]  Ryo Torii,et al.  Impact of stent strut design in metallic stents and biodegradable scaffolds. , 2014, International journal of cardiology.

[27]  C. Hamm,et al.  Current status of bioresorbable scaffolds in the treatment of coronary artery disease. , 2014, Journal of the American College of Cardiology.

[28]  P. Serruys,et al.  Assessing bioresorbable coronary devices: methods and parameters. , 2014, JACC. Cardiovascular imaging.

[29]  Zhigang Xu,et al.  Recent advances on the development of magnesium alloys for biodegradable implants. , 2014, Acta biomaterialia.

[30]  Michael C. McDaniel,et al.  Novel drug-eluting stents for coronary revascularization. , 2014, Trends in cardiovascular medicine.

[31]  Yubo Fan,et al.  Magnesium based degradable biomaterials: A review , 2014, Frontiers of Materials Science.

[32]  C. Kiminami,et al.  Processing and characterization of amorphous magnesium based alloy for application in biomedical implants , 2014 .

[33]  R. Waksman,et al.  The Effects of Novel, Bioresorbable Scaffolds on Coronary Vascular Pathophysiology , 2014, Journal of Cardiovascular Translational Research.

[34]  Yoshinobu Onuma,et al.  Bioresorbable scaffolds: rationale, current status, challenges, and future. , 2014, European heart journal.

[35]  T. narayanan,et al.  Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges , 2014 .

[36]  L. Petrini,et al.  Texture effects on design of Mg biodegradable stents , 2014 .

[37]  A. Colombo,et al.  Looking into the future with bioresorbable vascular scaffolds , 2013, Expert review of cardiovascular therapy.

[38]  G. Song,et al.  Advances in Mg corrosion and research suggestions , 2013 .

[39]  Ying Yang,et al.  Current status of research and application in vascular stents , 2013 .

[40]  P. Serruys,et al.  Coronary stents: historical development, current status and future directions. , 2013, British medical bulletin.

[41]  Deyuan Zhang,et al.  Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent , 2013, Journal of Materials Science: Materials in Medicine.

[42]  M. Niinomi,et al.  Development of new metallic alloys for biomedical applications. , 2012, Acta biomaterialia.

[43]  Joseph C. Wu,et al.  Biomaterial applications in cardiovascular tissue repair and regeneration , 2012, Expert review of cardiovascular therapy.

[44]  Yoshinobu Onuma,et al.  Bioresorbable Scaffolds: Current Evidence and Ongoing Clinical Trials , 2012, Current Cardiology Reports.

[45]  P. Serruys,et al.  Freeing the vessel from metallic cage: what can we achieve with bioresorbable vascular scaffolds? , 2012, Cardiovascular Intervention and Therapeutics.

[46]  R. A. Antunes,et al.  Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. , 2012, Acta biomaterialia.

[47]  Andrej Atrens,et al.  Corrosion mechanism applicable to biodegradable magnesium implants , 2011 .

[48]  P. Serruys,et al.  Bioresorbable scaffold technologies. , 2011, Circulation journal : official journal of the Japanese Circulation Society.

[49]  Patrick W Serruys,et al.  Coronary stents: looking forward. , 2010, Journal of the American College of Cardiology.

[50]  Yufeng Zheng,et al.  A review on magnesium alloys as biodegradable materials , 2010 .

[51]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[52]  D. Mantovani,et al.  Developments in metallic biodegradable stents. , 2010, Acta biomaterialia.

[53]  J. Wilcox,et al.  Challenges related to development of bioabsorbable vascular stents. , 2009, EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.

[54]  D. Moher,et al.  Reprint--preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. , 2009, Physical therapy.

[55]  D. Moher,et al.  Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement , 2009, BMJ : British Medical Journal.

[56]  D. Moher,et al.  Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement , 2009, BMJ : British Medical Journal.

[57]  T. Hanawa Materials for metallic stents , 2009, Journal of Artificial Organs.

[58]  Patrick W Serruys,et al.  Fully Biodegradable Coronary Stents , 2008, American journal of cardiovascular drugs : drugs, devices, and other interventions.

[59]  M. Wei,et al.  Corrosion process of pure magnesium in simulated body fluid , 2008 .

[60]  Ron Waksman,et al.  Promise and challenges of bioabsorbable stents , 2007, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[61]  Marc D Feldman,et al.  Coronary stents: a materials perspective. , 2007, Biomaterials.

[62]  T. O’Brien,et al.  Current status of catheter- and stent-based gene therapy. , 2004, Cardiovascular research.

[63]  C. Zollikofer,et al.  Historical overview on the development and characteristics of stents and future outlooks , 1992, CardioVascular and Interventional Radiology.

[64]  G. Thouas,et al.  Metallic implant biomaterials , 2015 .