Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes

[1]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[2]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[3]  J. Hafner,et al.  Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.

[4]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[5]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[6]  Charles M. Lieber,et al.  Resonant electron scattering by defects in single-walled carbon nanotubes. , 2001, Science.

[7]  Li Shi,et al.  Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes , 2000 .

[8]  Cohen,et al.  Is the intrinsic thermoelectric power of carbon nanotubes positive? , 2000, Physical review letters.

[9]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[10]  Kong,et al.  Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps , 2000, Physical review letters.

[11]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[12]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[13]  E. Anderson,et al.  Scanned probe microscopy of electronic transport in carbon nanotubes. , 2000, Physical review letters.

[14]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[15]  P. Eklund,et al.  Giant thermopower in carbon nanotubes: A one-dimensional Kondo system , 1999 .

[16]  H. Dai,et al.  Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes , 1999 .

[17]  S. Louie,et al.  Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes , 1999 .

[18]  D. Suh,et al.  Magnetothermopower of single wall carbon nanotube newtwork , 1999 .

[19]  C. Schönenberger,et al.  Interference and Interaction in multi-wall carbon nanotubes , 1999, cond-mat/9905144.

[20]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[21]  Z. Pan,et al.  Linear specific heat of carbon nanotubes , 1999 .

[22]  Thomas Nussbaumer,et al.  Aharonov–Bohm oscillations in carbon nanotubes , 1999, Nature.

[23]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[24]  Riichiro Saito,et al.  Berry's Phase and Absence of Back Scattering in Carbon Nanotubes. , 1998 .

[25]  M. Tian,et al.  Thermoelectric power behavior in carbon nanotubule bundles from 4.2 to 300 K , 1998 .

[26]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[27]  Tsuneya Ando,et al.  Impurity Scattering in Carbon Nanotubes Absence of Back Scattering , 1998 .

[28]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[29]  A. Rinzler,et al.  Thermoelectric Power of Single-Walled Carbon Nanotubes , 1998 .

[30]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[31]  P. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1996, Science.

[32]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[33]  R. Lathe Phd by thesis , 1988, Nature.

[34]  Y. Imry,et al.  Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. , 1986, Physical review. B, Condensed matter.

[35]  J. Honig,et al.  Thermoelectric and Thermomagnetic Effects and Applications , 1967 .