Zero forcing parameters and minimum rank problems
暂无分享,去创建一个
Shaun M. Fallat | Hein van der Holst | H. Tracy Hall | Leslie Hogben | Francesco Barioli | P. van den Driessche | Wayne Barrett | W. Barrett | Francesco Barioli | H. Hall | L. Hogben | H. Holst | B. Shader | Bryan Shader | P. Driessche
[1] Yves Colin de Verdière,et al. Multiplicities of Eigenvalues and Tree-Width of Graphs , 1998, J. Comb. Theory B.
[2] Shaun M. Fallat,et al. Computation of minimal rank and path cover number for certain graphs , 2004 .
[3] Shaun M. Fallat,et al. The minimum rank of symmetric matrices described by a graph: A survey☆ , 2007 .
[4] Charles R. Johnson. Olga, matrix theory and the Taussky unification problem , 1998 .
[5] Lon H. Mitchell,et al. Linearly independent vertices and minimum semidefinite rank , 2009 .
[6] Lon H. Mitchell,et al. Lower Bounds in Minimum Rank Problems , 2010 .
[7] Vittorio Giovannetti,et al. Full control by locally induced relaxation. , 2007, Physical review letters.
[8] Maximum nullity of outerplanar graphs and the path cover number , 2010 .
[9] Wendy Wang,et al. On the Minimum Rank Among Positive Semidefinite Matrices with a Given Graph , 2008, SIAM J. Matrix Anal. Appl..
[10] Hein van der Holst,et al. Graphs whose positive semi-definite matrices have nullity at most two , 2003 .
[11] ON THE MAXIMUM POSITIVE SEMI-DEFINITE NULLITY AND THE CYCLE MATROID OF GRAPHS ∗ , 2009 .
[12] Joseph A. Gallian,et al. A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.
[13] W. Haemers. Zero forcing sets and minimum rank of graphs , 2008 .
[14] Charles R. Johnson,et al. The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree , 1999 .
[15] Shaun M. Fallat,et al. On the minimum rank of not necessarily symmetric matrices : a preliminary study , 2009 .