Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets

[1]  Lai‐Sheng Wang,et al.  A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24(-) cluster. , 2013, The Journal of chemical physics.

[2]  B. Yakobson,et al.  Probing the synthesis of two-dimensional boron by first-principles computations. , 2013, Angewandte Chemie.

[3]  Lai‐Sheng Wang,et al.  B22- and B23-: all-boron analogues of anthracene and phenanthrene. , 2012, Journal of the American Chemical Society.

[4]  Xiaojun Wu,et al.  Two-dimensional boron monolayer sheets. , 2012, ACS nano.

[5]  S. Bhowmick,et al.  Polymorphism of two-dimensional boron. , 2012, Nano letters.

[6]  Truong Ba Tai,et al.  Structure of boron clusters revisited, Bn with n = 14–20 , 2012 .

[7]  Lai‐Sheng Wang,et al.  A photoelectron spectroscopy and ab initio study of B21-: negatively charged boron clusters continue to be planar at 21. , 2012, The Journal of chemical physics.

[8]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[9]  Lai‐Sheng Wang,et al.  All-boron analogues of aromatic hydrocarbons: B17- and B18-. , 2011, The Journal of chemical physics.

[10]  Hui Bai,et al.  Deciphering the mystery of hexagon holes in an all-boron graphene α-sheet. , 2011, Physical chemistry chemical physics : PCCP.

[11]  Stefan Goedecker,et al.  Energy landscape of fullerene materials: a comparison of boron to boron nitride and carbon. , 2010, Physical review letters.

[12]  Alexander I Boldyrev,et al.  A concentric planar doubly π-aromatic B₁₉⁻ cluster. , 2010, Nature chemistry.

[13]  Lai‐Sheng Wang,et al.  A concentric planar doubly p-aromatic B 19 2 cluster , 2010 .

[14]  Hui Tang,et al.  Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures , 2009 .

[15]  G. Brocks,et al.  DFT Study of Planar Boron Sheets: A New Template for Hydrogen Storage , 2009, 0910.0929.

[16]  Wei Huang,et al.  Probing the 2D to 3D structural transition in gold cluster anions using argon tagging. , 2009, Physical review letters.

[17]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[18]  Yuanxu Wang,et al.  The competition of double-, four-, and three-ring tubular B(3n) (n = 8-32) nanoclusters. , 2008, The Journal of chemical physics.

[19]  Lai‐Sheng Wang,et al.  A photoelectron spectroscopic and theoretical study of B16- and B16(2-): an all-boron naphthalene. , 2008, Journal of the American Chemical Society.

[20]  E. Jemmis,et al.  Stuffing improves the stability of fullerenelike boron clusters. , 2008, Physical review letters.

[21]  B. Yakobson,et al.  Erratum: B 80 Fullerene: An Ab Initio Prediction of Geometry, Stability, and Electronic Structure [Phys. Rev. Lett. 98 , 166804 (2007)] , 2008 .

[22]  Xiaobao Yang,et al.  Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties , 2008 .

[23]  M. Kappes,et al.  Boron cluster cations: transition from planar to cylindrical structures. , 2007, Angewandte Chemie.

[24]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[25]  Sohrab Ismail-Beigi,et al.  Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. , 2007, Physical review letters.

[26]  B. Yakobson,et al.  B80 fullerene: an Ab initio prediction of geometry, stability, and electronic structure. , 2007, Physical review letters.

[27]  Jiří Čížek,et al.  On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules , 2007 .

[28]  Ravindra Pandey,et al.  Stability and Electronic Properties of Atomistically-Engineered 2D Boron Sheets , 2007 .

[29]  Anastassia N. Alexandrova,et al.  All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry , 2006 .

[30]  Wei An,et al.  Relative stability of planar versus double-ring tubular isomers of neutral and anionic boron cluster B20 and B20-. , 2006, The Journal of chemical physics.

[31]  J. Kunstmann,et al.  Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties , 2005, cond-mat/0509455.

[32]  J. Joannopoulos,et al.  Electronic and mechanical properties of planar and tubular boron structures , 2005 .

[33]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[34]  S. Bulusu,et al.  Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Anastassia N Alexandrova,et al.  Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. , 2003, Angewandte Chemie.

[36]  Jun Li,et al.  Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity , 2003, Nature materials.

[37]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[38]  Jun Yu Li,et al.  Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. , 2002, Angewandte Chemie.

[39]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[40]  Angel Rubio,et al.  New boron based nanostructured materials , 1999 .

[41]  W. Lipscomb,et al.  Proposed Boron Nanotubes. , 1998, Inorganic chemistry.

[42]  A. Quandt,et al.  Nanotubules of bare boron clusters: Ab initio and density functional study , 1997 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[45]  Lai‐Sheng Wang,et al.  Photoelectron spectroscopy of size‐selected transition metal clusters: Fe−n, n=3–24 , 1995 .

[46]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[47]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[48]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[49]  Mark S. Gordon,et al.  Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements , 1980 .

[50]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .