New results of general n-dimensional incompressible Navier–Stokes equations

Let u=u(x,t,u0) represent the global strong/weak solutions of the Cauchy problems for the general n-dimensional incompressible Navier–Stokes equations ut+eΔ2nut−αΔu+(u⋅∇)u+∇p+(β⋅∇)u=0,∇⋅u=0,u(x,0)=u0(x),∇⋅u0=0, where the spatial dimension n⩾2, 0⩽e⩽1 is a constant and β=(β1,β2,…,βn)T∈Rn is a constant vector. Note that if e=0 and β=0, then the problem reduces to the traditional Navier–Stokes equations. Let the scalar functions ϕij∈C2(Rn)∩L1(Rn), ∂ϕij∂xj∈L1(Rn)∩H2n(Rn), i,j∈{1,2,…,n}. Define the real vector-valued functions Φi=(ϕi1,ϕi2,…,ϕin)T. Let the initial data u0(x)=(∑j=1n∂ϕ1j∂xj(x),∑j=1n∂ϕ2j∂xj(x),…,∑j=1n∂ϕnj∂xj(x))T satisfy ∑i=1n∑j=1n∂2ϕij∂xi∂xj(x)=0. Then limt→∞{(1+t)1+n/2∫Rn[|u(x,t)|2+e|Δnu(x,t)|2]dx}=1(2π)n(π2α)n/214α∑k=1n[∫RnΦk(x)dx]2. For any integer m⩾1, we will establish the following limit limt→∞{(1+t)2m+1+n/2∫Rn[|Δmu(x,t)|2+e|Δm+nu(x,t)|2]dx}=1(2π)n(π2α)n/2(14α)2m+1[∏l=12m(2l+n)]∑k=1n[∫RnΦk(x)dx]2. This kind of exact limit will have great influence on the Hausdorff dimension of the global attractor of the model equations.

[1]  E. Olson,et al.  Finite fractal dimension and Holder-Lipshitz parametrization , 1996 .

[2]  Zhang Linghai,et al.  Sharp Rate of Decay of Solutions to 2-Dimensional Navier-Stokes Equations , 1995 .

[3]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[4]  Shui-Nee Chow,et al.  Invariant manifolds for flows in Banach spaces , 1988 .

[5]  E. Titi,et al.  Remark on the Rate of Decay of Higher Order Derivatives for Solutions to the Navier–Stokes Equations in Rn☆ , 2000 .

[6]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[7]  G. Sell Global attractors for the three-dimensional Navier-Stokes equations , 1996 .

[8]  Tosio Kato The Navier-Stokes equation for an incompressible fluid in ${\bf R}^2$ with a measure as the initial vorticity , 1994, Differential and Integral Equations.

[9]  H. Beirão da Veiga,et al.  On the Smoothness of a Class of Weak Solutions to the Navier—Stokes equations , 2000 .

[10]  George R. Sell,et al.  Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations , 1989 .

[11]  H. Beirão Veiga,et al.  Erratum to: Time-Periodic Solutions of the Navier-Stokes Equations in Unbounded Cylindrical Domains – Leray’s Problem for Periodic Flows , 2005 .

[12]  T. Miyakawa,et al.  On optimal decay rates for weak solutions to the Navier-Stokes equations in $R^n$ , 2001 .

[13]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[14]  E. S. Titi,et al.  Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models , 2006 .

[15]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[16]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[17]  J. Necas,et al.  On Leray's self-similar solutions of the Navier-Stokes equations , 1996 .

[18]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[19]  Tosio Kato Strong solutions of the Navier-Stokes equation in Morrey spaces , 1992 .

[20]  Solutions to some open problems in Fluid dynamics , 2008 .

[21]  H. Beirao da Veiga,et al.  Existence and Asymptotic Behavior for Strong Solutions of Navier-Stokes Equations in the Whole Space , 1985 .

[22]  Fanghua Lin,et al.  A new proof of the Caffarelli‐Kohn‐Nirenberg theorem , 1998 .

[23]  Maria E. Schonbek,et al.  Large time behaviour of solutions to the navier-stokes equations , 1986 .

[24]  H. B. Veiga,et al.  Lp-stability for the strong solutions of the Navier-Stokes equations in the whole space , 1987 .

[25]  A. Carpio Large-time behavior in incompressible Navier-Stokes equations , 1996 .

[26]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[27]  R. Temam,et al.  Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents , 1987 .

[28]  Michael Wiegner,et al.  Decay and stability in Lp for strong solutions of the Cauchyproblem for the Navier-Stokes equations , 1990 .

[29]  Edriss S. Titi,et al.  Attractors for the Two-Dimensional Navier–Stokes-α Model: An α-Dependence Study , 2003 .

[30]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[31]  M. Wiegner Decay of the L∞-norm of solutions of Navier-Stokes equations in unbounded domains , 1994 .

[32]  Maria E. Schonbek,et al.  L2 decay for weak solutions of the Navier-Stokes equations , 1985 .

[33]  R. Temam,et al.  Variétés inertielles des équations différentielles dissipatives , 1985 .

[34]  A. Eden,et al.  Exponential Attractors for Dissipative Evolution Equations , 1995 .

[35]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[36]  Michael Wiegner,et al.  Decay Results for Weak Solutions of the Navier–Stokes Equations on Rn , 1987 .

[37]  Maria E. Schonbek,et al.  Lower bounds of rates of decay for solutions to the Navier-Stokes equations , 1991 .

[38]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .