LMI-based H∞ synchronization of second-order neutral master-slave systems using delayed output feedback control

The H∞ synchronization problem of the master and slave structure of a second-order neutral master-slave systems with time-varying delays is presented in this paper. Delay-dependent sufficient conditions for the design of a delayed output-feedback control are given by Lyapunov-Krasovskii method in terms of a linear matrix inequality (LMI). A controller, which guarantees H∞ synchronization of the master and slave structure using some free weighting matrices, is then developed. A numerical example has been given to show the effectiveness of the method. The simulation results illustrate the effectiveness of the proposed methodology.

[1]  J. Hale,et al.  Stability of Motion. , 1964 .

[2]  William L. Garrard,et al.  Stability of a class of coupled systems , 1967 .

[3]  Mark J. Balas,et al.  Trends in large space structure control theory: Fondest hopes, wildest dreams , 1982 .

[4]  Amit Bhaya,et al.  On the design of large flexible space structures (LFSS) , 1985 .

[5]  P. A. Cook Simple feedback systems with chaotic behaviour , 1985 .

[6]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[7]  Guanrong Chen,et al.  On feedback control of chaotic continuous-time systems , 1993 .

[8]  B. Datta,et al.  Feedback stabilization of a second-order system: A nonmodal approach , 1993 .

[9]  K. Park,et al.  Second-order structural identification procedure via state-space-based system identification , 1994 .

[10]  Tomasz Kapitaniak,et al.  Continuous control and synchronization in chaotic systems , 1995 .

[11]  Joaquin Alvarez,et al.  Bifurcations and Chaos in a Linear Control System with Saturated Input , 1997 .

[12]  Bifurcations and Chaos in a PD-Controlled Pendulum , 1998 .

[13]  Seamus D. Garvey,et al.  Extracting Second-Order Systems from State-Space Representations , 1999 .

[14]  PooGyeon Park,et al.  A delay-dependent stability criterion for systems with uncertain time-invariant delays , 1999, IEEE Trans. Autom. Control..

[15]  Ricardo Femat,et al.  Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization , 2000 .

[16]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .

[17]  Emilia Fridman,et al.  New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems , 2001, Syst. Control. Lett..

[18]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[19]  Jaroslav Kautsky,et al.  Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case , 2001, SIAM J. Matrix Anal. Appl..

[20]  Emilia Fridman,et al.  A descriptor system approach to H∞ control of linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[21]  D. Ho,et al.  Robust stabilization for a class of discrete-time non-linear systems via output feedback: The unified LMI approach , 2003 .

[22]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[23]  Guang-Ren Duan,et al.  Parametric eigenstructure assignment in second-order descriptor linear systems , 2004, IEEE Transactions on Automatic Control.

[24]  Michael Sebek,et al.  Robust pole placement for second-order systems: an LMI approach , 2003, Kybernetika.

[25]  James Lam,et al.  Script H sign∞ model reduction of linear systems with distributed delay , 2005 .

[26]  Jiang-Wen Xiao,et al.  Adaptive control and synchronization for a class of nonlinear chaotic systems using partial system states , 2006 .

[27]  Ju H. Park Synchronization of Genesio chaotic system via backstepping approach , 2006 .

[28]  Qing-Guo Wang,et al.  Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays , 2006 .

[29]  Chi-Chuan Hwang,et al.  Exponential synchronization of a class of neural networks with time-varying delays , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  J. Yan,et al.  Robust synchronization of chaotic systems via adaptive sliding mode control , 2006 .

[31]  C. Leeuwen,et al.  Synchronization of chaotic neural networks via output or state coupling , 2006 .

[32]  Guanrong Chen,et al.  New criteria for synchronization stability of general complex dynamical networks with coupling delays , 2006 .

[33]  Luis Govinda García-Valdovinos,et al.  Observer-based sliding mode impedance control of bilateral teleoperation under constant unknown time delay , 2007, Robotics Auton. Syst..

[34]  J. Yan,et al.  Robust synchronization of unified chaotic systems via sliding mode control , 2007 .

[35]  T. Liao,et al.  H∞ synchronization of chaotic systems using output feedback control design , 2007 .

[36]  Mohammad Shahrokhi,et al.  Indirect adaptive control of discrete chaotic systems , 2007 .

[37]  Huijun Gao,et al.  Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays. , 2008, ISA transactions.

[38]  Mehdi Behzad,et al.  Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control , 2008 .

[39]  Hamid Reza Karimi,et al.  Observer-Based Mixed H2/H∞ Control Design for Linear Systems with Time-Varying Delays: An LMI Approach , 2008 .

[40]  Hamid Reza Karimi,et al.  Robust mixed H2/H∞ delayed state feedback control of uncertain neutral systems with time‐varying delays , 2008 .

[41]  Hamid Reza Karimi,et al.  Delay-range-dependent exponential H∞ synchronization of a class of delayed neural networks , 2009 .

[42]  Wang-Long Li,et al.  Robust synchronization of drive-response chaotic systems via adaptive sliding mode control , 2009 .