Circuits with arbitrary gates for random operators

We consider boolean circuits computing n-operators f:{0,1}^n --> {0,1}^n. As gates we allow arbitrary boolean functions; neither fanin nor fanout of gates is restricted. An operator is linear if it computes n linear forms, that is, computes a matrix-vector product y=Ax over GF(2). We prove the existence of n-operators requiring about n^2 wires in any circuit, and linear n-operators requiring about n^2/\log n wires in depth-2 circuits, if either all output gates or all gates on the middle layer are linear.

[1]  Stasys Jukna Circuits with Arbitrary Gates , 2012 .

[2]  Pavel Pudlák,et al.  Communication in bounded depth circuits , 1994, Comb..

[3]  Stasys Jukna Representing (0, 1)-matrices by boolean circuits , 2010, Discret. Math..

[4]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications, Third Edition , 1997, Texts in Computer Science.

[5]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[6]  Noga Alon,et al.  Linear Circuits over GF(2) , 1990, SIAM J. Comput..

[7]  Pavel Pudlák,et al.  On shifting networks , 1993, Theor. Comput. Sci..

[8]  Zsolt Tuza,et al.  Covering of graphs by complete bipartite subgraphs; Complexity of 0–1 matrices , 1984, Comb..

[9]  Ran Raz,et al.  Lower bounds for matrix product, in bounded depth circuits with arbitrary gates , 2001, STOC '01.

[10]  Stasys Jukna Entropy of Operators or why Matrix Multiplication is Hard for Depth-Two Circuits , 2008, Theory of Computing Systems.

[11]  Noga Alon,et al.  Superconcentrators of Depths 2 and 3; Odd Levels Help (Rarely) , 1994, J. Comput. Syst. Sci..

[12]  Siegfried Bublitz,et al.  Decomposition of graphs and monotone formula size of homogeneous functions , 1986, Acta Informatica.

[13]  Jaikumar Radhakrishnan,et al.  Bounds for Dispersers, Extractors, and Depth-Two Superconcentrators , 2000, SIAM J. Discret. Math..

[14]  Avi Wigderson,et al.  Superconcentrators, generalizers and generalized connectors with limited depth , 1983, STOC.

[15]  Nicholas Pippenger,et al.  Superconcentrators of Depth 2 , 1982, J. Comput. Syst. Sci..

[16]  Vojtech Rödl,et al.  Boolean Circuits, Tensor Ranks, and Communication Complexity , 1997, SIAM J. Comput..