Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB.
暂无分享,去创建一个
Moritz Mehmet | Roman Schnabel | R. Schnabel | H. Vahlbruch | M. Mehmet | S. Steinlechner | T. Eberle | S. Ast | Sebastian Steinlechner | Tobias Eberle | Henning Vahlbruch | Stefan Ast
[1] Reinhard F. Werner,et al. Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source , 2011, 1103.1817.
[2] N. Mavalvala,et al. Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.
[3] Vitus Händchen,et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. , 2010, Physical review letters.
[4] Moritz Mehmet,et al. Demonstration of a quantum-enhanced fiber Sagnac interferometer. , 2010, Optics letters.
[5] Karsten Danzmann,et al. The GEO 600 squeezed light source , 2010, 1004.4975.
[6] G. M. Harry,et al. Advanced LIGO: the next generation of gravitational wave detectors , 2010 .
[7] R. Schnabel,et al. Building blocks for future detectors: Silicon test masses and 1550 nm laser light , 2009, 0912.3164.
[8] Karsten Danzmann,et al. Observation of squeezed states with strong photon-number oscillations , 2009, 0909.5386.
[9] R. Schnabel,et al. Observation of cw squeezed light at 1550 nm. , 2009, Optics letters.
[10] R. Schnabel,et al. Quantum engineering of squeezed states for quantum communication and metrology , 2007, 0707.2845.
[11] Karsten Danzmann,et al. Coherent control of vacuum squeezing in the gravitational-wave detection band. , 2006, Physical review letters.
[12] A. Furusawa,et al. Squeezing at 946nm with periodically poled KTiOPO(4). , 2005, Optics express.
[13] Sheila Rowan,et al. Thermal noise and material issues for gravitational wave detectors , 2005 .
[14] Kirk McKenzie,et al. Squeezing in the audio gravitational-wave detection band. , 2004, Physical review letters.
[15] R. Schnabel,et al. Recovery of continuous wave squeezing at low frequencies , 2002, quant-ph/0205097.
[16] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .