NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J
暂无分享,去创建一个
David Lafreniere | Norman Murray | Bryce Croll | Ray Jayawardhana | Jonathan J. Fortney | Loic Albert | J. Fortney | D. Lafrenière | R. Jayawardhana | N. Murray | L. Albert | B. Croll | D. Lafreniére
[1] David Lafreniere,et al. NEAR-INFRARED THERMAL EMISSION FROM THE HOT JUPITER TrES-2b: GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE , 2010, 1005.3027.
[2] A. Loeb. A Dynamical Method for Measuring the Masses of Stars with Transiting Planets , 2005, astro-ph/0501548.
[3] M. López-Morales,et al. Thermal Emission from Transiting Very Hot Jupiters: Prospects for Ground-based Detection at Optical Wavelengths , 2007, 0708.0822.
[4] David Charbonneau,et al. An Upper Limit on the Reflected Light from the Planet Orbiting the Star τ Bootis , 1999, astro-ph/9907195.
[5] Richard S. Freedman,et al. A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.
[6] I. Hubeny,et al. A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .
[7] I. Hubeny,et al. Optical Albedo Theory of Strongly Irradiated Giant Planets: The Case of HD 209458b , 2008, 0803.2523.
[8] A. Collier Cameron,et al. H-band thermal emission from the 19-h period planet WASP-19b , 2010, 1002.1947.
[9] E. Agol,et al. Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.
[10] L. J. Richardson,et al. On the Dayside Thermal Emission of Hot Jupiters , 2005 .
[11] Michel Mayor,et al. The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.
[12] D. Saumon,et al. Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .
[13] Tristan Guillot,et al. Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .
[14] Joseph L. Hora,et al. Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THERMAL EMISSION OF EXOPLANET XO-1B , 2022 .
[15] R. G. West,et al. WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.
[16] Douglas N. C. Lin,et al. WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation , 2010, Nature.
[17] B. Scott Gaudi,et al. Prospects for the Characterization and Confirmation of Transiting Exoplanets via the Rossiter-McLaughlin Effect , 2006, astro-ph/0608071.
[18] Mercedes Lopez-Morales,et al. Ground-based secondary eclipse detection of the very-hot Jupiter OGLE-TR-56b , 2009, 0901.1876.
[19] Paul S. Smith,et al. The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .
[20] David Lafreniere,et al. NEAR-INFRARED THERMAL EMISSION FROM TrES-3b: A Ks-BAND DETECTION AND AN H-BAND UPPER LIMIT ON THE DEPTH OF THE SECONDARY ECLIPSE , 2010, 1006.0737.
[21] Sara Seager,et al. The Very Low Albedo of an Extrasolar Planet: MOST Space-based Photometry of HD 209458 , 2007, 0711.4111.
[22] G. Fazio,et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.
[23] T. Barman. On the Presence of Water and Global Circulation in the Transiting Planet HD 189733b , 2008, 0802.0854.
[24] David Charbonneau,et al. Detection of Thermal Emission from an Extrasolar Planet , 2005 .
[25] Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.
[26] B. Croll. Markov Chain Monte Carlo Methods Applied to Photometric Spot Modeling , 2006 .
[27] R. Kuschnig,et al. WATER, METHANE, AND CARBON DIOXIDE PRESENT IN THE DAYSIDE SPECTRUM OF THE EXOPLANET HD 209458b , 2009, 0908.4010.
[28] Todd A. Thompson,et al. Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling , 2005 .
[29] Mercedes Lopez-Morales,et al. DAY-SIDE z′-BAND EMISSION AND ECCENTRICITY OF WASP-12b , 2009, 0912.2359.
[30] David Charbonneau,et al. The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.
[31] A. Burrows,et al. DETECTION OF A TEMPERATURE INVERSION IN THE BROADBAND INFRARED EMISSION SPECTRUM OF TrES-4 , 2008, 0810.0021.
[32] L. Hebb,et al. A DETAILED SPECTROPOLARIMETRIC ANALYSIS OF THE PLANET-HOSTING STAR WASP-12, , 2010, 1007.3082.
[33] S. Poddan'y,et al. Exoplanet Transit Database. Reduction and processing of the photometric data of exoplanet transits , 2009, 0909.2548.
[34] Drake Deming,et al. Infrared radiation from an extrasolar planet , 2005, Nature.
[35] Observatoire de Geneve,et al. VLT transit and occultation photometry for the bloated planet CoRoT-1b , 2009, 0905.4571.
[36] A. Liddle,et al. Information criteria for astrophysical model selection , 2007, astro-ph/0701113.
[37] Joshua N. Winn,et al. The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b , 2008, 0804.4475.
[38] Gautam Vasisht,et al. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.
[39] Darin Ragozzine,et al. PROBING THE INTERIORS OF VERY HOT JUPITERS USING TRANSIT LIGHT CURVES , 2008, Proceedings of the International Astronomical Union.
[40] F. Allard,et al. The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.
[41] B. Scott Gaudi,et al. Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.
[42] Pin Chen,et al. Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .