Harmonizing functional connectivity reduces scanner effects in community detection

[1]  Joanne C. Beer,et al.  Mitigating site effects in covariance for machine learning in neuroimaging data , 2021, Human brain mapping.

[2]  Hae-Jeong Park,et al.  Re-visiting Riemannian geometry of symmetric positive definite matrices for the analysis of functional connectivity , 2020, NeuroImage.

[3]  Sterling C. Johnson,et al.  The Brain Chart of Aging: Machine‐learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans , 2020, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[4]  D. Bassett,et al.  Towards precise resting-state fMRI biomarkers in psychiatry: synthesizing developments in transdiagnostic research, dimensional models of psychopathology, and normative neurodevelopment , 2020, Current Opinion in Neurobiology.

[5]  Danielle S. Bassett,et al.  Space-independent community and hub structure of functional brain networks , 2019, NeuroImage.

[6]  Y. Stern,et al.  The Effect of Aging on Resting State Connectivity of Predefined Networks in the Brain , 2019, Front. Aging Neurosci..

[7]  Mark D’Esposito,et al.  Brain Modularity: A Biomarker of Intervention-related Plasticity , 2019, Trends in Cognitive Sciences.

[8]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[9]  Anastasios Bezerianos,et al.  A Network-Based Perspective in Alzheimer's Disease: Current State and an Integrative Framework , 2019, IEEE Journal of Biomedical and Health Informatics.

[10]  Saori C. Tanaka,et al.  Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias , 2018, bioRxiv.

[11]  Brian S. Caffo,et al.  Covariate Assisted Principal Regression for Covariance Matrix Outcomes , 2018, bioRxiv.

[12]  J. Gold,et al.  On the nature and use of models in network neuroscience , 2018, Nature Reviews Neuroscience.

[13]  Toshihiko Aso,et al.  Effect of phase‐encoding direction on group analysis of resting‐state functional magnetic resonance imaging , 2018, Psychiatry and clinical neurosciences.

[14]  M. Weissman,et al.  Statistical harmonization corrects site effects in functional connectivity measurements from multi‐site fMRI data , 2018, Human brain mapping.

[15]  C. Werner,et al.  Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging biomarker? , 2018, NeuroImage: Clinical.

[16]  Santo Fortunato,et al.  Reconfiguration of Cortical Networks in MDD Uncovered by Multiscale Community Detection with fMRI , 2017, Cerebral cortex.

[17]  Russell T. Shinohara,et al.  Harmonization of cortical thickness measurements across scanners and sites , 2017, NeuroImage.

[18]  B. T. Thomas Yeo,et al.  Topographic organization of the cerebral cortex and brain cartography , 2017, NeuroImage.

[19]  Dane Taylor,et al.  Post-Processing Partitions to Identify Domains of Modularity Optimization , 2017, Algorithms.

[20]  Emilio Merlo Pich,et al.  Statistical power and prediction accuracy in multisite resting-state fMRI connectivity , 2017, NeuroImage.

[21]  Ragini Verma,et al.  Harmonization of multi-site diffusion tensor imaging data , 2017, NeuroImage.

[22]  Danielle S Bassett,et al.  Diversity of meso-scale architecture in human and non-human connectomes , 2017, Nature Communications.

[23]  Chih-Ling Tsai,et al.  Covariance Regression Analysis , 2015 .

[24]  Stephen M. Smith,et al.  ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI , 2015, Front. Neurosci..

[25]  M. Cugmas,et al.  On comparing partitions , 2015 .

[26]  Aaron Clauset,et al.  Learning Latent Block Structure in Weighted Networks , 2014, J. Complex Networks.

[27]  Katie L. McMahon,et al.  A multivariate distance-based analytic framework for connectome-wide association studies , 2014, NeuroImage.

[28]  G. Costantini,et al.  Generalization of Clustering Coefficients to Signed Correlation Networks , 2014, PloS one.

[29]  Aaron Clauset,et al.  Adapting the Stochastic Block Model to Edge-Weighted Networks , 2013, ArXiv.

[30]  Richard F. Betzel,et al.  Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity , 2013, Network Science.

[31]  Santo Fortunato,et al.  Consensus clustering in complex networks , 2012, Scientific Reports.

[32]  Edward T. Bullmore,et al.  The discovery of population differences in network community structure: New methods and applications to brain functional networks in schizophrenia , 2012, NeuroImage.

[33]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[34]  Paul J. Laurienti,et al.  An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks , 2011, NeuroImage.

[35]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[36]  Nikos Paragios,et al.  DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting , 2009, IPMI.

[37]  Olaf Sporns,et al.  Weight-conserving characterization of complex functional brain networks , 2011, NeuroImage.

[38]  Peter D. Hoff,et al.  A Covariance Regression Model , 2011, 1102.5721.

[39]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[40]  Eva Petkova,et al.  Web-Based Supplementary Materials for “ On Distance-Based Permutation Tests for Between-Group Comparisons ” , 2009 .

[41]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[42]  *Contributed equally to the work , 2010 .

[43]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[44]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[45]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[46]  M. Meilă Comparing clusterings---an information based distance , 2007 .

[47]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[48]  Gary H. Glover,et al.  Reducing interscanner variability of activation in a multicenter fMRI study: Controlling for signal-to-fluctuation-noise-ratio (SFNR) differences , 2006, NeuroImage.

[49]  Habib Benali,et al.  Partial correlation for functional brain interactivity investigation in functional MRI , 2006, NeuroImage.

[50]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[51]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[52]  Roger Guimerà,et al.  Cartography of complex networks: modules and universal roles , 2005, Journal of statistical mechanics.

[53]  K. Kaski,et al.  Intensity and coherence of motifs in weighted complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[55]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[56]  Tom Leonard,et al.  The Matrix-Logarithmic Covariance Model , 1996 .

[57]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[58]  S B Hulley,et al.  CARDIA: study design, recruitment, and some characteristics of the examined subjects. , 1988, Journal of clinical epidemiology.

[59]  I. Rossman,et al.  Normal Human Aging: The Baltimore Longitudinal Study of Aging , 1986 .

[60]  L. Hubert,et al.  Comparing partitions , 1985 .

[61]  B. Flury Common Principal Components in k Groups , 1984 .