On dot-depth two

Etant donnes des entiers positifs m1, …, mk, on definit des congruences ~(m1, …, mk) en relation avec une version du jeu de Ehrenfeucht-Fraisse, et qui correspondent au niveau k de la hierarchie de concatenation de Straubing. Etant donne un alphabet fini A, une condition necessaire et suffisante est donnee pour que les monoides definis par ces congruences soient de dot-delpth exactement 2

[1]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[2]  J. Metz R. Fraisse, Cours de Logique Mathématique. Tome 2. Théorie des modèles. 177 S. Paris 1972. Gauthier‐Villars , 1973 .

[3]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[4]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[5]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[6]  Jean-Éric Pin Hiérarchies de Concaténation , 1984, RAIRO Theor. Informatics Appl..

[7]  Bret Tilson,et al.  Categories as algebra: An essential ingredient in the theory of monoids , 1987 .

[8]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[9]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[10]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[11]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[12]  Howard Straubing Semigroups and Languages of Dot-Depth 2 , 1986, ICALP.

[13]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[14]  Wolfgang Thomas An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .

[15]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[16]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..