On dot-depth two
暂无分享,去创建一个
[1] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[2] J. Metz. R. Fraisse, Cours de Logique Mathématique. Tome 2. Théorie des modèles. 177 S. Paris 1972. Gauthier‐Villars , 1973 .
[3] Howard Straubing,et al. FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .
[4] A. Ehrenfeucht. An application of games to the completeness problem for formalized theories , 1961 .
[5] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[6] Jean-Éric Pin. Hiérarchies de Concaténation , 1984, RAIRO Theor. Informatics Appl..
[7] Bret Tilson,et al. Categories as algebra: An essential ingredient in the theory of monoids , 1987 .
[8] Herbert B. Enderton,et al. A mathematical introduction to logic , 1972 .
[9] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[10] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[11] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[12] Howard Straubing. Semigroups and Languages of Dot-Depth 2 , 1986, ICALP.
[13] R. McNaughton,et al. Counter-Free Automata , 1971 .
[14] Wolfgang Thomas. An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .
[15] Howard Straubing,et al. A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..
[16] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..