The Daniel K. Inouye Solar Telescope – Observatory Overview

We present an overview of the National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST), its instruments, and support facilities. The 4 m aperture DKIST provides the highest-resolution observations of the Sun ever achieved. The large aperture of DKIST combined with state-of-the-art instrumentation provide the sensitivity to measure the vector magnetic field in the chromosphere and in the faint corona, i.e. for the first time with DKIST we will be able to measure and study the most important free-energy source in the outer solar atmosphere – the coronal magnetic field. Over its operational lifetime DKIST will advance our knowledge of fundamental astronomical processes, including highly dynamic solar eruptions that are at the source of space-weather events that impact our technological society. Design and construction of DKIST took over two decades. DKIST implements a fast (f/2), off-axis Gregorian optical design. The maximum available field-of-view is 5 arcmin. A complex thermal-control system was implemented in order to remove at prime focus the majority of the 13 kW collected by the primary mirror and to keep optical surfaces and structures at ambient temperature, thus avoiding self-induced local seeing. A high-order adaptive-optics system with 1600 actuators corrects atmospheric seeing enabling diffraction limited imaging and spectroscopy. Five instruments, four of which are polarimeters, provide powerful diagnostic capability over a broad wavelength range covering the visible, near-infrared, and mid-infrared spectrum. New polarization-calibration strategies were developed to achieve the stringent polarization accuracy requirement of 5×10−4. Instruments can be combined and operated simultaneously in order to obtain a maximum of observational information. Observing time on DKIST is allocated through an open, merit-based proposal process. DKIST will be operated primarily in “service mode” and is expected to on average produce 3 PB of raw data per year. A newly developed data center located at the NSO Headquarters in Boulder will initially serve fully calibrated data to the international users community. Higher-level data products, such as physical parameters obtained from inversions of spectro-polarimetric data will be added as resources allow.

Tetsu Anan | Friedrich Wöger | Philip R. Goode | Haosheng Lin | Alexandra Tritschler | Jacobus M. Oschmann | Andrew E. Ferayorni | Thomas R. Rimmele | David M. Harrington | Stacey R. Sueoka | Oskar von der Lühe | Erik M. Johansson | Luke C. Johnson | Bret D. Goodrich | Stephen B. Wampler | Predrag Sekulic | Jeffrey R. Kuhn | Simon C. Craig | Kerry Gonzales | Timothy R. Williams | Donald L. Mickey | Roberto Casini | LeEllen Phelps | Andrew Ferayorni | Mihalis Mathioudakis | Joseph P. McMullin | Stephen Guzzo | Sarah A. Jaeggli | Richard T. Summers | Erik Starman | David F. Elmore | J. R. Hubbard | John R. Hubbard | Isaac McQuillen | Wolfgang Schmidt | Alfred de Wijn | Arthur D. Eigenbrot | Mark Warner | Louis R. Szabo | Andrew Beard | Eric Cross | Brialyn Onodera | Stephen L. Keil | Christian Beck | R. Rosner | E. Johansson | J. Kuhn | S. Hegwer | W. Schmidt | T. Rimmele | P. Goode | C. Beck | A. Tritschler | R. Casini | D. Harrington | Haosheng Lin | T. Schad | A. Eigenbrot | D. Elmore | B. Goodrich | S. Jaeggli | M. Rast | J. McMullin | F. Wöger | R. Hubbard | J. M. Oschmann | D. Mickey | S. Keil | M. Knölker | M. Mathioudakis | T. Anan | S. Craig | M. Warner | O. F. von der Lühe | A. Davey | A. D. de Wijn | A. Fehlmann | H. Marshall | P. Jeffers | A. Beard | D. Berst | B. Cowan | E. Cross | Bryan K. Cummings | Colleen Donnelly | Jean-Benoit de Vanssay | Christopher Foster | C. Galapon | Christopher Gedrites | K. Gonzales | B. S. Gregory | S. S. Guzman | Stephen Guzzo | Chen Liang | M. Liang | Isaac McQuillen | C. Mayer | K. Newman | Brialyn Onodera | L. Phelps | Myles M. Puentes | Christopher M. Richards | Lukas Rimmele | Predrag Sekulic | Stephan R. Shimko | Brett E. Simison | Brett Smith | E. Starman | S. Sueoka | A. Szabo | S. Wampler | T. R. Williams | Charles R. White | Steve Hegwer | André Fehlmann | Michael Knölker | Robert R. Rosner | Alisdair Davey | Mark P. Rast | Thomas A. Schad | Heather K. Marshall | Paul F. Jeffers | David C. Berst | Bruce A. Cowan | Colleen Donnelly | Jean-Benoit de Vanssay | Christopher Foster | Chriselle Ann Galapon | Christopher Gedrites | Brian S. Gregory | Stephanie S. Guzman | Robert P. Hubbard | Chen Liang | Mary Liang | Christopher Mayer | Karl Newman | Christopher Richards | Lukas M. Rimmele | Brett Smith | Aimee Szabo | Louis Szabo | Charles White | T. Williams | P. Sekulic | S. Guzman | Bruce Cowan | L. Johnson | Christopher Richards | J. Hubbard | J. Oschmann | Mary Liang

[1]  Mark Warner,et al.  Daniel K. Inouye Solar Telescope: computational fluid dynamic analyses and evaluation of the air knife model , 2016, Astronomical Telescopes + Instrumentation.

[2]  Robert P. Hubbard,et al.  The Advanced Technology Solar Telescope mount assembly , 2006, SPIE Astronomical Telescopes + Instrumentation.

[3]  Philip R. Goode,et al.  The 1.6 m off-axis New Solar Telescope (NST) in Big Bear , 2012, Other Conferences.

[4]  J. Kuhn,et al.  GROUND-BASED DETECTION OF AN INFRARED SI X CORONAL EMISSION LINE AND IMPROVED WAVELENGTHS FOR THE INFRARED FE XIII EMISSION LINES , 1994 .

[5]  Joe DeVries,et al.  Thermal performance of the ATST secondary mirror , 2007, International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT).

[6]  M. Rempel NUMERICAL SIMULATIONS OF QUIET SUN MAGNETISM: ON THE CONTRIBUTION FROM A SMALL-SCALE DYNAMO , 2014, 1405.6814.

[7]  T. Berger,et al.  The Horizontal Magnetic Flux of the Quiet-Sun Internetwork as Observed with the Hinode Spectro-Polarimeter , 2008 .

[8]  N. Weiss,et al.  Convection-driven Emergence of Small-Scale Magnetic Fields and their Role in Coronal Heating and Solar Wind Acceleration , 2008 .

[9]  J. Hough,et al.  The linear polarization of nearby bright stars measured at the parts per million level , 2010, 1003.1753.

[10]  Robert P. Hubbard,et al.  ATST enclosure: seeing performance, thermal modeling, and error budgets , 2004, SPIE Astronomical Telescopes + Instrumentation.

[11]  Friedrich Wöger,et al.  Status of the DKIST system for solar adaptive optics , 2016, Astronomical Telescopes + Instrumentation.

[12]  C. Keller,et al.  DIFFERENTIAL HANLE EFFECT AND THE SPATIAL VARIATION OF TURBULENT MAGNETIC FIELDS ON THE SUN , 1998 .

[13]  A. Pevtsov,et al.  Current Theoretical Models and Future High Resolution Solar Observations: Preparing for ATST , 2003 .

[14]  C. Beck,et al.  Inferring telescope polarization properties through spectral lines without linear polarization , 2018, Astronomy & Astrophysics.

[15]  J. Kuhn,et al.  Calibrating and Stabilizing Spectropolarimeters with Charge Shuffling and Daytime Sky Measurements , 2015, 1503.06744.

[16]  David M. Harrington,et al.  Polarization modeling and predictions for Daniel K. Inouye Solar Telescope, part 6: fringe mitigation with polycarbonate modulators and optical contact calibration retarders , 2020 .

[17]  Alexander Bell,et al.  A two-dimensional spectropolarimeter as a first-light instrument for the Daniel K. Inouye Solar Telescope , 2014, Astronomical Telescopes and Instrumentation.

[18]  David M. Harrington,et al.  Polarization modeling and predictions for Daniel K. Inouye Solar Telescope part 1: telescope and example instrument configurations , 2017 .

[19]  Eugene N. Parker,et al.  The Physics of the Sun and the Gateway to the Stars , 2000 .

[20]  Robert P. Hubbard,et al.  Science Objectives and Technical Challenges of the Advanced Technology Solar Telescope (Invited review) , 2003 .

[21]  David M. Harrington,et al.  Daytime sky polarization calibration limitations , 2017 .

[22]  L. Phelps,et al.  Advanced Technology Solar Telescope lower enclosure thermal system , 2008, Astronomical Telescopes + Instrumentation.

[23]  Bret D. Goodrich,et al.  Software controls for the ATST Solar Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[24]  Javier Ariño,et al.  DKIST enclosure fabrication factory assembly and testing , 2014, Astronomical Telescopes and Instrumentation.

[25]  Thomas R. Rimmele,et al.  Solar Adaptive Optics , 2000, Astronomical Telescopes and Instrumentation.

[26]  David M. Harrington,et al.  Polarization modeling and predictions for Daniel K. Inouye Solar Telescope, part 7: preliminary NCSP system calibration and model fitting , 2021 .

[27]  Robert P. Hubbard,et al.  The Advanced Technology Solar Telescope coude lab thermal environment , 2010, Astronomical Telescopes + Instrumentation.

[28]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[29]  Robert P. Hubbard,et al.  Instrumentation for the Advanced Technology Solar Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[30]  D. Deming,et al.  Solar Magnetic Field Studies Using the 12 Micron Emission Lines. IV. Observations of a Delta Region Solar Flare , 2001, astro-ph/0112116.

[31]  Mats G. Lofdahl,et al.  Observations of dark-cored filaments in sunspot penumbrae , 2007 .

[32]  Thomas Berkefeld,et al.  From Clear to DKIST: advancing solar MCAO from 1.6 to 4 meters , 2018, Astronomical Telescopes + Instrumentation.

[33]  O. Engvold Large Earth-based Solar Telescope—LEST , 1991 .

[34]  Isabelle F. Scholl,et al.  Cryogenic near infrared spectropolarimeter for the Daniel K. Inouye Solar Telescope , 2016, Astronomical Telescopes + Instrumentation.

[35]  D. Deming,et al.  Solar Magnetic Field Studies Using the 12 Micron Emission Lines. III. Simultaneous Measurements at 12 and 1.6 Microns , 2000 .

[36]  LeEllen Phelps,et al.  Facility level thermal systems for the Advanced Technology Solar Telescope , 2012, Other Conferences.

[37]  J. Borrero,et al.  ARE INTERNETWORK MAGNETIC FIELDS IN THE SOLAR PHOTOSPHERE HORIZONTAL OR VERTICAL? , 2017 .

[38]  Friedrich Wöger,et al.  DKIST visible broadband imager interference filters , 2014, Astronomical Telescopes and Instrumentation.

[39]  LeEllen Phelps,et al.  ATST enclosure mechanical and thermal models , 2011, Other Conferences.

[40]  J. Kuhn,et al.  Correcting Systematic Polarization Effects in Keck LRISp Spectropolarimetry to < 0.05% , 2015, 1505.03916.

[41]  Jose Marino,et al.  Solar Adaptive Optics , 2011, Living reviews in solar physics.

[42]  Friedrich Wöger,et al.  The Daniel K. Inouye Solar Telescope first light instruments and critical science plan , 2014, Astronomical Telescopes and Instrumentation.

[43]  Friedrich Wöger,et al.  The Advanced Technology Solar Telescope: design and early construction , 2012, Other Conferences.

[44]  Paul Jeffers,et al.  ATST telescope mount: telescope of machine tool , 2012, Other Conferences.

[45]  Robert P. Hubbard,et al.  Construction status of the Daniel K. Inouye solar telescope , 2016, Astronomical Telescopes + Instrumentation.

[46]  Paul Jeffers,et al.  ATST telescope pier , 2012, Other Conferences.

[47]  Robert P. Hubbard,et al.  Monte Carlo telescope performance modeling , 2004, SPIE Astronomical Telescopes + Instrumentation.

[48]  Robert P. Hubbard,et al.  The wavefront correction system for the Advanced Technology Solar Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[49]  S. K. Solanki,et al.  Small-Scale Solar Magnetic Fields , 2008, 0812.4465.

[50]  Solar Magnetic Fields: Polarized Radiation Diagnostics , 1994 .

[51]  Haosheng Lin,et al.  The Advanced Technology Solar Telescope Site Survey Sky Brightness Monitor , 2004 .

[52]  J. Kuhn,et al.  Coronagraphic Observations of Si x λ14301 and Fe xiii λ10747 Linearly Polarized Spectra Using the SOLARC Telescope , 2019, The Astrophysical Journal.

[53]  Thomas Berkefeld,et al.  The GREGOR solar telescope on Tenerife , 2012 .

[54]  M. Cheung,et al.  Three-dimensional modeling of chromospheric spectral lines in a simulated active region , 2019, Astronomy & Astrophysics.

[55]  Sebastian Ehrlichmann Solar Magnetic Fields Polarized Radiation Diagnostics , 2016 .

[56]  Friedrich Wöger,et al.  Solar adaptive optics with the DKIST: status report , 2014, Astronomical Telescopes and Instrumentation.

[57]  Christoph U. Keller,et al.  Polarization modeling and predictions for DKIST part 2: application of the Berreman calculus to spectral polarization fringes of beamsplitters and crystal retarders , 2017 .

[58]  S. Solanki,et al.  The magnetic field in the solar atmosphere , 2014, 1410.4214.

[59]  A. Lagg,et al.  Coupling from the Photosphere to the Chromosphere and the Corona , 2008, 0809.0987.

[60]  Edwin A. Valentijn,et al.  The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .

[61]  Scott Gregory,et al.  Commissioning of the Gregorian Optical System calibration unit for DKIST , 2020, Astronomical Telescopes + Instrumentation.

[62]  Blaise Canzian,et al.  Progress making the top end optical assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope , 2012, Other Conferences.

[63]  Thomas R. Rimmele,et al.  The Advanced Technology Solar Telescope (ATST) project: a construction update , 2013, Optics & Photonics - Optical Engineering + Applications.

[64]  Francois Rigaut,et al.  Clear widens the field for observations of the Sun with multi-conjugate adaptive optics , 2017 .

[65]  W. Schmidt,et al.  Daniel K. Inouye Solar Telescope: High‐resolution observing of the dynamic Sun , 2016 .

[66]  Matthias Rempel,et al.  EXTENSION OF THE MURAM RADIATIVE MHD CODE FOR CORONAL SIMULATIONS , 2016, 1609.09818.

[67]  Jeremy Bailey,et al.  Systematic variations in the wavelength dependence of interstellar linear polarization , 1976 .

[68]  Jr. Jacobus M. Oschmann Systems engineering in ground-based astronomy , 2004, SPIE Astronomical Telescopes + Instrumentation.

[69]  Robert P. Hubbard,et al.  Transitioning from conceptual design to construction performance specification , 2012, Other Conferences.

[70]  Robert P. Hubbard,et al.  Construction update of the Daniel K. Inouye Solar Telescope project , 2018, Astronomical Telescopes + Instrumentation.

[71]  Eric W. Hansen,et al.  Advanced Technology Solar Telescope M1 thermal control system design, modeling, and prototype testing , 2008, Astronomical Telescopes + Instrumentation.

[72]  Steven Tomczyk,et al.  A New Precise Measurement of the Coronal Magnetic Field Strength , 2000 .

[73]  M. Schuessler,et al.  TURBULENT MAGNETIC FIELDS IN THE QUIET SUN: IMPLICATIONS OF HINODE OBSERVATIONS AND SMALL-SCALE DYNAMO SIMULATIONS , 2008, 0812.2125.

[74]  S. Gibson,et al.  Coronal prominence structure and dynamics: A magnetic flux rope interpretation , 2006 .

[75]  Paul Jeffers,et al.  Performance verification of the DKIST Mount and Coudé Laboratory , 2014, Astronomical Telescopes and Instrumentation.

[76]  J. Stenflo,et al.  Solar magnetic fields as revealed by Stokes polarimetry , 2013, The Astronomy and Astrophysics Review.

[77]  Andrew Beard,et al.  DKIST controls model for synchronization of instrument cameras, polarization modulators, and mechanisms , 2014, Astronomical Telescopes and Instrumentation.

[78]  Motohide Tamura,et al.  PlanetPol: A Very High Sensitivity Polarimeter , 2006 .

[79]  Myung Cho,et al.  Optimization of the ATST primary mirror support system , 2006, SPIE Astronomical Telescopes + Instrumentation.

[80]  I. Dorotovic,et al.  Coimbra Solar Physics Meeting: Ground-based Solar Observations in the Space Instrumentation Era , 2016 .

[81]  N. Raouafi,et al.  Solar physics in the 2020s: DKIST, parker solar probe, and solar orbiter as a multi-messenger constellation , 2020, 2004.08632.

[82]  Robert P. Hubbard,et al.  Daniel K. Inouye Solar Telescope systems engineering update , 2014, Astronomical Telescopes and Instrumentation.

[83]  Characterization of Magnetic Flux in the Quiet Sun , 2002 .

[84]  Robert P. Hubbard,et al.  Daniel K. Inouye Solar Telescope optical alignment plan , 2016, Astronomical Telescopes + Instrumentation.

[85]  Dirk Soltau,et al.  The European Solar Telescope , 2012, Astronomy &amp; Astrophysics.

[86]  Javier Ariño,et al.  ATST Enclosure final design and construction plans , 2012, Other Conferences.

[87]  E. Pino Cosmic Magnetic Fields: from Stars and Galaxies to the Primordial Universe , 2010, 1003.3884.

[88]  J. Stenflo Solar magnetic fields , 1994 .

[89]  Andreas Kelz,et al.  Ground-based instrumentation for astronomy , 2004 .

[90]  Ralf Jedamzik,et al.  Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST) , 2014, Astronomical Telescopes and Instrumentation.

[91]  Roberto Gilmozzi,et al.  Ground-based and Airborne Telescopes VII , 2008 .

[92]  Allan Wirth,et al.  Deformable mirror designs for extreme AO (XAO) , 2014, Astronomical Telescopes and Instrumentation.

[93]  Robert P. Hubbard,et al.  Advanced Technology Solar Telescope: a progress report , 2004, SPIE Optics + Photonics.

[94]  M. Schüssler,et al.  The crucial role of surface magnetic fields for the solar dynamo , 2015, Science.

[95]  M. Cheung,et al.  A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare , 2018, Nature Astronomy.

[96]  Frank Hill,et al.  The Advanced Technology Solar Telescope -- Science Goals and Instrument Description. , 2001 .

[97]  David M. Harrington,et al.  Polarization modeling and predictions for DKIST part 3: focal ratio and thermal dependencies of spectral polarization fringes and optic retardance , 2018, 1803.08987.

[98]  Peter G. Nelson,et al.  The Visible Spectro-Polarimeter (ViSP) for the Advanced Technology Solar Telescope , 2010, Astronomical Telescopes + Instrumentation.

[99]  Frank Hill,et al.  Design and development of the Advanced Technology Solar Telescope (ATST) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[100]  S. Hasan,et al.  India's National Large Solar Telescope , 2012 .

[101]  Board on Physics Astronomy and Astrophysics in the New Millennium , 2001 .

[102]  David M. Harrington,et al.  Polarization modeling and predictions for Daniel K. Inouye Solar Telescope part 5: impacts of enhanced mirror and dichroic coatings on system polarization calibration , 2019 .

[103]  M. Sigwarth,et al.  The visible tunable filtergraph for the ATST , 2012, Other Conferences.

[104]  T. R. Rimmele,et al.  The Advanced Technology Solar Telescope: beginning construction of the world's largest solar telescope , 2010, Astronomical Telescopes + Instrumentation.

[105]  Haosheng Lin,et al.  The Granular Magnetic Fields of the Quiet Sun , 1999 .

[106]  Mark Rast,et al.  The Critical Science Plan for DKIST , 2019 .

[107]  LeEllen Phelps,et al.  Factory acceptance testing and model refinement for the Daniel K. Inouye Solar Telescope air knife assembly , 2018, Astronomical Telescopes + Instrumentation.

[108]  Hans J. Kärcher,et al.  The azimuth axes mechanisms for the ATST telescope mount assembly , 2012, Other Conferences.

[109]  M. Cullum,et al.  Modeling and systems engineering for astronomy : 24-25 June 2004, Glasgow, Scotland, United Kingdom , 2004 .

[110]  E. Landi Degl'Innocenti,et al.  Standard Stars for Linear Polarization Observed with FORS1 , 2007 .

[111]  M. Collados,et al.  Site testing for the Advanced Technology Solar Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[112]  Friedrich Wöger,et al.  Construction of the Advanced Technology Solar Telescope , 2012 .

[113]  R. Schlichenmaier,et al.  Sunspot Modeling: From Simplified Models to Radiative MHD Simulations , 2011 .

[114]  B. Goodrich,et al.  The adaptive optics and wavefront correction systems for the Advanced Technology Solar Telescope , 2010, Astronomical Telescopes + Instrumentation.

[115]  Erik M. Johansson,et al.  First light with adaptive optics: the performance of the DKIST high-order adaptive optics , 2020, Astronomical Telescopes + Instrumentation.

[116]  T. R. Rimmele The unique scientific capabilities of the Advanced Technology Solar Telescope , 2008 .

[117]  Ingrid Mann,et al.  The Near-Infrared Coronal Spectrum , 1996 .

[118]  Thomas R. Rimmele,et al.  Advanced Technology Solar Telescope: A status report , 2010 .

[119]  Motohide Tamura,et al.  The effect of airborne dust on astronomical polarization measurements , 2008 .

[120]  F. Wöger Optical transfer functions derived from solar adaptive optics system data. , 2010, Applied optics.

[121]  R. Stein,et al.  Solar Surface Magneto-Convection , 2012 .

[122]  V. Grigoryev,et al.  Project of the Large Solar Telescope with mirror 3 m in diameter , 2020, Solnechno-Zemnaya Fizika.

[123]  Michael Gorman,et al.  Cooling a solar telescope enclosure: plate coil thermal analysis , 2016, Astronomical Telescopes + Instrumentation.

[124]  J. Kuhn,et al.  Deriving Telescope Mueller Matrices Using Daytime Sky Polarization Observations , 2011, 1105.2615.

[125]  John R. Hubbard,et al.  The ATST base: command-action-response in action , 2010, Astronomical Telescopes + Instrumentation.

[126]  Jacques M. Beckers CLEAR: A Concept for a Coronagraph and Low Emissivity Astronomical Reflector , 1995 .

[127]  Paul Jeffers,et al.  DKIST telescope mount factory testing overview and lessons learned , 2016, Astronomical Telescopes + Instrumentation.

[128]  Haosheng Lin,et al.  Solar site testing for the Advanced Technology Solar Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[129]  Friedrich Wöger,et al.  The DKIST low order wavefront sensor , 2018, Astronomical Telescopes + Instrumentation.

[130]  Alexandra Tritschler,et al.  The Visible Broadband Imager: The Sun at High Spatial and Temporal Resolution , 2011 .

[131]  Kevin P. Reardon,et al.  Petascale cyberinfrastructure for ground-based solar physics: approach of the DKIST data center , 2016, Astronomical Telescopes + Instrumentation.

[132]  George Z. Angeli,et al.  Modeling, Systems Engineering, and Project Management for Astronomy IV , 2010 .

[133]  Friedrich Wöger,et al.  The ATST visible broadband imager: a case study for real-time image reconstruction and optimal data handling , 2010, Astronomical Telescopes + Instrumentation.

[134]  Stephen L. Keil,et al.  Innovative Telescopes and Instrumentation for Solar Astrophysics , 2003 .

[135]  Erik M. Johansson,et al.  Simultaneous control of multiple instruments at the Advanced Technology Solar Telescope , 2012, Other Conferences.

[136]  Haosheng Lin,et al.  Probable Detection of a Bright Infrared Coronal Emission Line of Si IX near 3.93 Microns , 1999 .

[137]  T. Emonet,et al.  Simulations of magneto-convection in the solar photosphere Equations, methods, and results of the MURaM code , 2005 .

[138]  B. Jurcevich,et al.  The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.

[139]  T. R. Rimmele,et al.  Advanced Technology Solar Telescope: a progress report , 2006, SPIE Astronomical Telescopes + Instrumentation.

[140]  Thomas R. Rimmele,et al.  Quasi-static wavefront control for the Advanced Technology Solar Telescope , 2012, Other Conferences.

[141]  T. R. Rimmele,et al.  Advanced Technology Solar Telescope: a progress report , 2005, SPIE Optics + Photonics.

[142]  Robert P. Hubbard,et al.  Construction status of the Daniel K. Inouye Solar Telescope , 2014, Astronomical Telescopes and Instrumentation.

[143]  S. Tomczyk,et al.  The Eruption of a Prominence-carrying Coronal Flux Rope: Forward Synthesis of the Magnetic Field Strength Measurement by the COronal Solar Magnetism Observatory Large Coronagraph , 2018, Astrophysical Journal.

[144]  L. B. Bellot Rubio,et al.  Quiet Sun magnetic fields: an observational view , 2019, Living Reviews in Solar Physics.

[145]  Steven Tomczyk,et al.  Spectroscopic Detection of the 3.934 Micron Line of Si IX in the Solar Corona , 2002 .

[146]  D. Gisler,et al.  Observing the Second Solar Spectrum at IRSOL , 2009 .

[147]  Robert F. Stein,et al.  Solar Small-Scale Magnetoconvection , 2006 .

[148]  M. Rempel,et al.  NUMERICAL SUNSPOT MODELS: ROBUSTNESS OF PHOTOSPHERIC VELOCITY AND MAGNETIC FIELD STRUCTURE , 2012, 1203.0534.

[149]  Gaizka Murga,et al.  Plate coil thermal test bench for the Daniel K. Inouye Solar Telescope (DKIST) carousel cooling system , 2014, Astronomical Telescopes and Instrumentation.

[150]  Andreas Fischer,et al.  End-to-end simulations of the visible tunable filter for the Daniel K. Inouye Solar Telescope , 2016, Astronomical Telescopes + Instrumentation.

[151]  M. Schüssler Flux tubes, surface magnetism, and the solar dynamo: constraints and open problems , 2005 .

[152]  Y. Fan,et al.  Numerical Simulations of Three-dimensional Coronal Magnetic Fields Resulting from the Emergence of Twisted Magnetic Flux Tubes , 2004 .

[153]  James H. Burge,et al.  Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope , 2016, Astronomical Telescopes + Instrumentation.

[154]  J. Kuhn,et al.  Coronal Magnetic Field Measurements , 2004 .

[155]  Ruth Kneale,et al.  Daniel K. Inouye Solar Telescope systems engineering update , 2016, Astronomical Telescopes + Instrumentation.

[156]  David M. Harrington,et al.  Polarization modeling and predictions for Daniel K. Inouye Solar Telescope part 4: calibration accuracy over field of view, retardance spatial uniformity, and achromat design sensitivity , 2018, Journal of Astronomical Telescopes, Instruments, and Systems.

[157]  Friedrich Wöger,et al.  Laboratory integration of the DKIST wavefront correction system , 2018, Astronomical Telescopes + Instrumentation.

[158]  Haosheng Lin,et al.  The SOLARC off-axis coronagraph , 2003, SPIE Astronomical Telescopes + Instrumentation.

[159]  Charles R. White,et al.  DKIST facility management system integration , 2016, Astronomical Telescopes + Instrumentation.

[160]  M. Rempel Small-scale Dynamo Simulations: Magnetic Field Amplification in Exploding Granules and the Role of Deep and Shallow Recirculation , 2018, Astrophysical Journal.

[161]  Robert P. Hubbard,et al.  Technical challenges of the Advanced Technology Solar Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[162]  Haosheng Lin,et al.  Utilization of redundant polarized solar spectra to infer the polarization properties of the new generation of large aperture solar telescopes , 2010, Astronomical Telescopes + Instrumentation.

[163]  Richard R. Radick,et al.  Solar adaptive optics at the National Solar Observatory , 1998, Astronomical Telescopes and Instrumentation.

[164]  Christoph U. Keller,et al.  Design and development of the Advanced Technology Solar Telescope , 2003 .

[165]  M. Schuessler,et al.  Magnetoconvection in a Sunspot Umbra , 2006, astro-ph/0603078.

[166]  Robert P. Hubbard,et al.  Advanced Technology Solar Telescope optical design , 2006, SPIE Astronomical Telescopes + Instrumentation.

[167]  Anita Enmark,et al.  Integrated Modeling of Complex Optomechanical Systems , 2011 .