Inositol derivatives: evolution and functions

Current research on inositols mainly focuses on myo-inositol (Ins) derivatives in eukaryotic cells, and in particular on the many roles of Ins phospholipids and polyphosphorylated Ins derivatives. However, inositols and their derivatives are more versatile than this — they have acquired diverse functions over the course of evolution. Given the central involvement of primordial bacteria and archaea in the emergence of eukaryotes, what is the status of inositol derivatives in these groups of organisms, and how might inositol, inositol lipids and inositol phosphates have become ubiquitous constituents of eukaryotes? And how, later, might the multifarious functions of inositol derivatives have emerged during eukaryote diversification?

[1]  P. Brennan,et al.  Phosphatidylinositol Is an Essential Phospholipid of Mycobacteria* , 2000, The Journal of Biological Chemistry.

[2]  A. Chatterjee,et al.  Diversification and evolution of L‐myo‐inositol 1‐phosphate synthase 1 , 2003, FEBS letters.

[3]  H. Morii,et al.  Biosynthesis of Ether-Type Polar Lipids in Archaea and Evolutionary Considerations , 2007, Microbiology and Molecular Biology Reviews.

[4]  M. Griswold,et al.  Characterization of the Expression and Regulation of Genes Necessary for myo-Inositol Biosynthesis and Transport in the Seminiferous Epithelium1 , 2004, Biology of reproduction.

[5]  G. Sprott,et al.  Salt Tolerance of Archaeal Extremely Halophilic Lipid Membranes* , 2006, Journal of Biological Chemistry.

[6]  Feng Chen,et al.  Genomic Minimalism in the Early Diverging Intestinal Parasite Giardia lamblia , 2007, Science.

[7]  R. Firtel,et al.  Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. , 2006, European journal of cell biology.

[8]  J. York,et al.  Roles for inositol polyphosphate kinases in the regulation of nuclear processes and developmental biology. , 2007, Advances in enzyme regulation.

[9]  S. Snyder,et al.  Phosphorylation of Proteins by Inositol Pyrophosphates , 2004, Science.

[10]  D. Selkoe,et al.  Orally available compound prevents deficits in memory caused by the Alzheimer amyloid‐β oligomers , 2006, Annals of neurology.

[11]  H. Eagle,et al.  Myo-Inositol as an essential growth factor for normal and malignant human cells in tissue culture. , 1956, The Journal of biological chemistry.

[12]  A. Lehninger,et al.  Restoration of ATP-induced contraction of "aged" mitochondria by phosphatidyl inositol. , 1963, Biochemical and biophysical research communications.

[13]  B. Bass,et al.  Inositol Hexakisphosphate Is Bound in the ADAR2 Core and Required for RNA Editing , 2005, Science.

[14]  H. Santos,et al.  Biosynthetic Pathways of Inositol and Glycerol Phosphodiesters Used by the Hyperthermophile Archaeoglobus fulgidus in Stress Adaptation , 2006, Journal of bacteriology.

[15]  S. Snyder,et al.  Phospholipase C-γ: diverse roles in receptor-mediated calcium signaling , 2005 .

[16]  M. Schell,et al.  Back in the water: the return of the inositol phosphates , 2001, Nature Reviews Molecular Cell Biology.

[17]  A. Conzelmann,et al.  Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. , 2007, Biochimica et biophysica acta.

[18]  H. Ikezawa,et al.  Glycosylphosphatidylinositol (GPI)-anchored proteins. , 2002, Biological & pharmaceutical bulletin.

[19]  R. Kay,et al.  Chemotaxis in the Absence of PIP3 Gradients , 2007, Current Biology.

[20]  H. Goldfine,et al.  Macrophage intracellular signaling induced by Listeria monocytogenes. , 2002, Microbes and infection.

[21]  J. Otto,et al.  A Conserved Family of Enzymes That Phosphorylate Inositol Hexakisphosphate , 2007, Science.

[22]  S. Henry,et al.  Regulation of 1D-myo-inositol-3-phosphate synthase in yeast. , 2006, Sub-cellular biochemistry.

[23]  C. Woese The Archaeal Concept and the World it Lives in: A Retrospective , 2004, Photosynthesis Research.

[24]  J. Lopes,et al.  Phosphatidylinositol biosynthesis: biochemistry and regulation. , 2005, Biochimica et biophysica acta.

[25]  A. Majumder,et al.  Introgression of a novel salt‐tolerant L‐myo‐inositol 1‐phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms , 2006, FEBS letters.

[26]  Y. Hannun,et al.  Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide , 2007, Nature.

[27]  K. Swann,et al.  PLCzeta, a sperm-specific PLC and its potential role in fertilization. , 2007, Biochemical Society symposium.

[28]  V. Raboy Seeds for a better future: 'low phytate' grains help to overcome malnutrition and reduce pollution. , 2001, Trends in plant science.

[29]  S. Pentyala,et al.  Structure, function, and control of phosphoinositide-specific phospholipase C. , 2000, Physiological reviews.

[30]  K G Oliver,et al.  Inositol phosphates and cell signaling: new views of InsP5 and InsP6. , 1993, Trends in biochemical sciences.

[31]  T. Cavalier-smith,et al.  Myosin domain evolution and the primary divergence of eukaryotes , 2005, Nature.

[32]  T. Tomita,et al.  The effect of myo-inositol deficiency on lipid metabolism in rats. II. The mechanism of triacylglycerol accumulation in the liver of myo-inositol-deficient rats. , 1974, Biochimica et biophysica acta.

[33]  I Silman,et al.  Identification of covalently bound inositol in the hydrophobic membrane-anchoring domain of Torpedo acetylcholinesterase. , 1985, Biochemical and biophysical research communications.

[34]  E. Wright,et al.  The sodium/glucose cotransport family SLC5 , 2004, Pflügers Archiv.

[35]  F. Govers,et al.  Genomewide analysis of phospholipid signaling genes in Phytophthora spp.: novelties and a missing link. , 2006, Molecular plant-microbe interactions : MPMI.

[36]  Patricia J. Johnson,et al.  Ancient Invasions: From Endosymbionts to Organelles , 2004, Science.

[37]  R. Michell Evolution of the diverse biological roles of inositols. , 2007, Biochemical Society symposium.

[38]  T. Balla,et al.  Phosphatidylinositol 4-kinases: old enzymes with emerging functions. , 2006, Trends in cell biology.

[39]  Michal Sharon,et al.  Mechanism of auxin perception by the TIR1 ubiquitin ligase , 2007, Nature.

[40]  J. Raven,et al.  Genomics and chloroplast evolution: what did cyanobacteria do for plants? , 2003, Genome Biology.

[41]  C. Bunce,et al.  Changes in the levels of inositol lipids and phosphates during the differentiation of HL60 promyelocytic cells towards neutrophils or monocytes , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  A. Saiardi,et al.  Inositol pyrophosphates: metabolism and signaling , 2006, Cellular and Molecular Life Sciences.

[43]  R. Michell,et al.  Hypo-osmotic Stress Activates Plc1p-dependent Phosphatidylinositol 4,5-Bisphosphate Hydrolysis and Inositol Hexakisphosphate Accumulation in Yeast* , 2004, Journal of Biological Chemistry.

[44]  Y. Koga,et al.  Archaea contain a novel diether phosphoglycolipid with a polar head group identical to the conserved core of eucaryal glycosyl phosphatidylinositol. , 1992, The Journal of biological chemistry.

[45]  D. Rossi,et al.  Intracellular Ca(2+) release channels in evolution. , 2000, Current opinion in genetics & development.

[46]  M. Lemmon,et al.  Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. , 2006, Trends in biochemical sciences.

[47]  A. Saiardi,et al.  Requirement of Inositol Pyrophosphates for Full Exocytotic Capacity in Pancreatic β Cells , 2007, Science.

[48]  K. Mikoshiba The IP3 receptor/Ca2+ channel and its cellular function. , 2007, Biochemical Society symposium.

[49]  北村 洋 Inhibition of myo-inositol transport causes acute renal failure with selective medullary injury in the rat , 1998 .

[50]  J. York,et al.  Molecular Definition of a Novel Inositol Polyphosphate Metabolic Pathway Initiated by Inositol 1,4,5-Trisphosphate 3-Kinase Activity in Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[51]  G. Puzo,et al.  Relationships between the structure and the roles of lipoarabinomannans and related glycoconjugates in tuberculosis pathogenesis. , 1998, Frontiers in bioscience : a journal and virtual library.

[52]  Troels Z. Kristiansen,et al.  Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event , 2007, Proceedings of the National Academy of Sciences.

[53]  D. Westaway,et al.  Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model , 2006, Nature Medicine.

[54]  Benjamin L Turner,et al.  Inositol phosphates in the environment. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  S. Baldauf,et al.  The protistan origins of animals and fungi. , 2006, Molecular biology and evolution.

[56]  M. Labouesse,et al.  The phosphoinositide kinase PIKfyve/Fab1p regulates terminal lysosome maturation in Caenorhabditis elegans. , 2006, Molecular biology of the cell.

[57]  P Bork,et al.  Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes. , 2001, Protein engineering.

[58]  J. R. Brown,et al.  The GPI biosynthetic pathway as a therapeutic target for African sleeping sickness. , 1999, Biochimica et biophysica acta.

[59]  J. McLaurin,et al.  Properties of scyllo–inositol as a therapeutic treatment of AD-like pathology , 2007, Journal of Molecular Medicine.

[60]  M. Foti,et al.  Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. , 2000, Molecular biology of the cell.

[61]  B. Armbruster,et al.  Inositol Diphosphate Signaling Regulates Telomere Length* , 2005, Journal of Biological Chemistry.

[62]  P. Yancey,et al.  Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[63]  G. Carman,et al.  Phospholipid synthesis in yeast: regulation by phosphorylation. , 2004, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[64]  R. C. Fahey,et al.  Novel thiols of prokaryotes. , 2001, Annual review of microbiology.

[65]  R. Michell Inositol phospholipids and cell surface receptor function. , 1975, Biochimica et biophysica acta.

[66]  H. Goldfine,et al.  Listeria monocytogenes phosphatidylinositol-specific phospholipase C has evolved for virulence by greatly reduced activity on GPI anchors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Pietro De Camilli,et al.  Phosphoinositides in cell regulation and membrane dynamics , 2006, Nature.

[68]  J. Nikawa,et al.  Molecular cloning of rat phosphatidylinositol synthase cDNA by functional complementation of the yeast Saccharomyces cerevisiae pis mutation , 1996, FEBS letters.

[69]  H. Hartman,et al.  What Does the Microsporidian E. cuniculi Tell Us About the Origin of the Eukaryotic Cell? , 2004, Journal of Molecular Evolution.

[70]  T. P. Neufeld,et al.  Body building: regulation of shape and size by PI3K/TOR signaling during development , 2003, Mechanisms of Development.

[71]  S. Emr,et al.  The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. , 2005, Current opinion in cell biology.

[72]  P. Yancey,et al.  Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses , 2005, Journal of Experimental Biology.

[73]  B. Stec,et al.  Reaching for mechanistic consensus across life kingdoms: structure and insights into catalysis of the myo-inositol-1-phosphate synthase (mIPS) from Archaeoglobus fulgidus. , 2005, Biochemistry.

[74]  S. Emr,et al.  The role of phosphoinositides in membrane transport. , 2001, Current opinion in cell biology.

[75]  G. Klein,et al.  neo-Inositol Polyphosphates in the AmoebaEntamoeba histolytica * , 2000, The Journal of Biological Chemistry.

[76]  Yue Sun,et al.  A Conspicuous Connection: Structure Defines Function for the Phosphatidylinositol-Phosphate Kinase Family , 2007, Critical reviews in biochemistry and molecular biology.

[77]  G. Irving,et al.  Inositol phosphates : their chemistry, biochemistry, and physiology , 1980 .

[78]  B. Holub,et al.  The nutritional significance, metabolism, and function of myo-inositol and phosphatidylinositol in health and disease. , 1982, Advances in nutritional research.

[79]  S. Gribaldo,et al.  The origin and evolution of Archaea: a state of the art , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[80]  P. Cammarata,et al.  Cloning the bovine Na+/myo-inositol cotransporter gene and characterization of an osmotic responsive promoter. , 1997, Experimental eye research.

[81]  Weizhong Li,et al.  Crystal structure of the tetrameric inositol 1‐phosphate phosphatase (TM1415) from the hyperthermophile, Thermotoga maritima , 2007, The FEBS journal.

[82]  R. Schwarz,et al.  The GPI1 homologue from Plasmodium falciparum complements a Saccharomyces cerevisiae GPI1 anchoring mutant. , 2002, Molecular and biochemical parasitology.

[83]  A. Morris,et al.  The inositol phosphates in WRK1 rat mammary tumour cells. , 1992, The Biochemical journal.

[84]  S. Chung,et al.  Sodium/myo‐inositol cotransporter‐1 is essential for the development and function of the peripheral nerves , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[85]  Purificación López-García,et al.  Ancestral lipid biosynthesis and early membrane evolution. , 2004, Trends in biochemical sciences.

[86]  W. Sherman,et al.  Identification and partial characterization of inositol: NAD+ epimerase and inosose: NAD(P)H reductase from the fat body of the American cockroach, Periplaneta americana L. , 1973, Biochemistry.

[87]  C. Samakovlis,et al.  Fab1 phosphatidylinositol 3-phosphate 5-kinase controls trafficking but not silencing of endocytosed receptors. , 2006, Molecular biology of the cell.

[88]  S Blair Hedges,et al.  BMC Evolutionary Biology BioMed Central , 2003 .

[89]  A. Theuvenet,et al.  Inositol 1,4,5‐trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae , 1993, FEBS letters.

[90]  V. Deretic,et al.  Phosphoinositides in phagolysosome and autophagosome biogenesis. , 2007, Biochemical Society symposium.

[91]  S. Snyder,et al.  Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[92]  M. Katan,et al.  Phospholipase C epsilon: linking second messengers and small GTPases. , 2006, Trends in cell biology.

[93]  J. Greer,et al.  Loss of Murine Na+/myo-Inositol Cotransporter Leads to Brain myo-Inositol Depletion and Central Apnea* , 2003, The Journal of Biological Chemistry.

[94]  L. Cantley,et al.  A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast , 2004, The Journal of cell biology.

[95]  S. Shears,et al.  Assessing the omnipotence of inositol hexakisphosphate. , 2001, Cellular signalling.

[96]  G. A. Thompson,et al.  Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. , 1988, The Journal of biological chemistry.

[97]  A. Kuspa,et al.  The Genome of Dictyostelium discoideum. , 2006, Methods in molecular biology.

[98]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[99]  J. Mudd,et al.  Lipid composition of chloroplasts isolated by aqueous and nonaqueous techniques. , 1968, Journal of lipid research.

[100]  D. Lambright,et al.  Evolutionarily conserved structural and functional roles of the FYVE domain. , 2007, Biochemical Society symposium.

[101]  A. Osterman,et al.  Genomic identification and in vitro reconstitution of a complete biosynthetic pathway for the osmolyte di-myo-inositol-phosphate , 2007, Proceedings of the National Academy of Sciences.

[102]  H. Eagle,et al.  Myo-inositol as an essential growth factor for normal and malignant human cells in tissue culture. , 1956, Science.

[103]  T. Tomita,et al.  The effect of myo-inositol deficiency on lipid metabolism in rats. I. The alteration of lipid metabolism in myo-inositol deficient rats. , 1974, Biochimica et biophysica acta.

[104]  Miquel Riera-Codina,et al.  Analysis of highly phosphorylated inositols in avian and crocodilian erythrocytes. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[105]  M. Wenk,et al.  Salmonella Modulates Vesicular Traffic by Altering Phosphoinositide Metabolism , 2004, Science.

[106]  A. Bilancio,et al.  Signalling by PI3K isoforms: insights from gene-targeted mice. , 2005, Trends in biochemical sciences.

[107]  W. Doolittle,et al.  Phylogenetic analyses of two "archaeal" genes in thermotoga maritima reveal multiple transfers between archaea and bacteria. , 2001, Molecular biology and evolution.

[108]  J. York Regulation of nuclear processes by inositol polyphosphates. , 2006, Biochimica et biophysica acta.

[109]  S. Henry,et al.  1L-myo-inositol-1-phosphate synthase. , 1997, Biochimica et biophysica acta.

[110]  S. Baldauf,et al.  The Deep Roots of Eukaryotes , 2003, Science.

[111]  R. Kay,et al.  Ca2+ signalling is not required for chemotaxis in Dictyostelium , 2000, The EMBO journal.

[112]  J. Otto,et al.  Alterations in an inositol phosphate code through synergistic activation of a G protein and inositol phosphate kinases , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[113]  Natalie Andrew,et al.  Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions , 2007, Nature Cell Biology.

[114]  K. Kuma,et al.  A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition. , 2005, Archaea.

[115]  A. Val,et al.  Organic phosphates in the red blood cells of fish. , 2000, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[116]  D. Penny,et al.  Evaluating hypotheses for the origin of eukaryotes. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[117]  B. Antonsson Phosphatidylinositol synthase from mammalian tissues. , 1997, Biochimica et biophysica acta.

[118]  S. Shears Understanding the biological significance of diphosphoinositol polyphosphates ('inositol pyrophosphates'). , 2007, Biochemical Society symposium.

[119]  L. Stephens,et al.  Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium , 1990, Nature.

[120]  H. Toh,et al.  Analysis of membrane stereochemistry with homology modeling of sn-glycerol-1-phosphate dehydrogenase. , 2002, Protein engineering.

[121]  Hyman Hartman,et al.  The origin of the eukaryotic cell: A genomic investigation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[122]  D. Sanders,et al.  Inositol 1,4,5-Trisphosphate-Sensitive Ca2+ Release across Nonvacuolar Membranes in Cauliflower , 1997, Plant physiology.