After the electronic field: Structure, bonding, and the first hyperpolarizability of HArF

In this work, we add different strength of external electric field (Eext) along molecule axis (Z‐axis) to investigate the electric field induced effect on HArF structure. The H‐Ar bond is the shortest at Eext = −189 × 10−4 and the Ar‐F bond show shortest value at Eext = 185 × 10−4 au. Furthermore, the wiberg bond index analyses show that with the variation of HArF structure, the covalent bond H‐Ar shows downtrend (ranging from0.79 to 0.69) and ionic bond Ar‐F shows uptrend (ranging from 0.04 to 0.17). Interestingly, the natural bond orbital analyses show that the charges of F atom range from −0.961 to −0.771 and the charges of H atoms range from 0.402 to 0.246. Due to weakened charge transfer, the first hyperpolarizability (βtot) can be modulated from 4078 to 1087 au. On the other hand, make our results more useful to experimentalists, the frequency‐dependent first hyperpolarizabilities were investigated by the coupled perturbed Hartree‐Fork method. We hope that this work may offer a new idea for application of noble‐gas hydrides. © 2013 Wiley Periodicals, Inc.

[1]  M. Räsänen,et al.  High kinetic stability of HXeBr upon interaction with carbon dioxide: HXeBr···CO2 complex in a xenon matrix and HXeBr in a carbon dioxide matrix. , 2012, The journal of physical chemistry. A.

[2]  Z. Su,et al.  Boron/nitrogen substitution of the central carbon atoms of the biphenalenyl diradical π dimer: a novel 2e-12c bond and large NLO responses. , 2011, Chemistry.

[3]  G. Frenking,et al.  On the stability, electronic structure, and nonlinear optical properties of HXeOXeF and FXeOXeF. , 2011, The journal of physical chemistry. A.

[4]  Xuri Huang,et al.  Electric field-driven acid-base chemistry: proton transfer from acid (HCl) to base (NH3/H2O). , 2011, The journal of physical chemistry. A.

[5]  L. Serrano-Andrés,et al.  On the Electronic Structure of H-Ng-Ng-F (Ng = Ar, Kr, Xe) and the Nonlinear Optical Properties of HXe2F. , 2010, Journal of chemical theory and computation.

[6]  Chia-Chung Sun,et al.  Rare gas atomic number dependence of the hyperpolarizability for rare gas inserted fluorohydrides, HRgF (Rg = He, Ar, and Kr). , 2009, The Journal of chemical physics.

[7]  Di Wu,et al.  The nitrogen edge‐doped effect on the static first hyperpolarizability of the supershort single‐walled carbon nanotube , 2009, J. Comput. Chem..

[8]  Qingzhong Li,et al.  Gigantic blue shift of the H-Ar stretch vibration in pi hydrogen-bonded C(2)H(2)...HArCCF complex. , 2009, The journal of physical chemistry. A.

[9]  Fang Ma,et al.  Lithiation and Li-Doped Effects of [5]Cyclacene on the Static First Hyperpolarizability , 2009 .

[10]  S. Dutta,et al.  Intrinsic half-metallicity in modified graphene nanoribbons. , 2009, Physical review letters.

[11]  Markku Räsänen,et al.  Noble-gas hydrides: new chemistry at low temperatures. , 2009, Accounts of chemical research.

[12]  Gernot Frenking,et al.  Is it possible to synthesize a neutral noble gas compound containing a Ng-Ng bond? A theoretical study of H-Ng-Ng-F (Ng = Ar, Kr, Xe). , 2009, Angewandte Chemie.

[13]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[14]  M. Räsänen,et al.  A small neutral molecule with two noble-gas atoms: HXeOXeH. , 2008, Journal of the American Chemical Society.

[15]  K. Harigaya,et al.  What is the shape effect on the (hyper)polarizabilities? A comparison study on the Möbius, normal cyclacene, and linear nitrogen-substituted strip polyacenes , 2008, 0901.0600.

[16]  Feng Long Gu,et al.  Structures and large NLO responses of new electrides: Li-doped fluorocarbon chain. , 2007, Journal of the American Chemical Society.

[17]  S. Louie,et al.  Half-metallic graphene nanoribbons , 2006, Nature.

[18]  Wei Chen,et al.  Li3-O-Li3 molecule: a metal-nonmetal-metal sandwichlike compound with a distending electron cloud. , 2005, The Journal of chemical physics.

[19]  Chia-Chung Sun,et al.  Theoretical investigation of the large nonlinear optical properties of (HCN)n clusters with Li atom. , 2005, The journal of physical chemistry. B.

[20]  S. Clark,et al.  Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field , 2004 .

[21]  B. Champagne,et al.  Second-order nonlinear optical coefficient of polyphosphazene-based materials: a theoretical study. , 2004, The Journal of chemical physics.

[22]  R. Gerber Formation of novel rare-gas molecules in low-temperature matrices. , 2004, Annual review of physical chemistry.

[23]  Jiabo Li,et al.  The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study. , 2004, Journal of the American Chemical Society.

[24]  Jan Lundell,et al.  A gate to organokrypton chemistry: HKrCCH. , 2003, Journal of the American Chemical Society.

[25]  S. McDowell Blue-shifting hydrogen bonding in N2⋯HKrF , 2003 .

[26]  D. Catone,et al.  Chiral aggregates of indan-1-ol with secondary alcohols and water: Laser spectroscopy in supersonic beams , 2002 .

[27]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[28]  Serge I. Gorelsky,et al.  Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods , 2001 .

[29]  J. Gilman,et al.  Nanotechnology , 2001 .

[30]  Debra J. Mascaro,et al.  Organic thin-film transistors: A review of recent advances , 2001, IBM J. Res. Dev..

[31]  M. Pettersson,et al.  Formation and characterization of neutral krypton and xenon hydrides in low-temperature matrices , 2000 .

[32]  S. Seidel,et al.  Xenon as a Complex Ligand: The Tetra Xenono Gold(II) Cation in AuXe4 , 2000 .

[33]  Jan Lundell,et al.  A stable argon compound , 2000, Nature.

[34]  M. W. Wong Prediction of a Metastable Helium Compound: HHeF , 2000 .

[35]  Paul L. A. Popelier,et al.  Characterization of a Dihydrogen Bond on the Basis of the Electron Density , 1998 .

[36]  E. K. Dalskov,et al.  Does scaling or addition provide the correct frequency dependence of beta (omega ; omega, omega) at the correlated level? An investigation for six e sigma molecules , 1997 .

[37]  Zyss,et al.  Assessment of the polarizabilities ( alpha, beta ) of a nonlinear optical compound , 1996, Physical review. B, Condensed matter.

[38]  M. Saunders,et al.  Noble Gas Atoms Inside Fullerenes , 1996, Science.

[39]  Uwe Koch,et al.  CHARACTERIZATION OF C-H-O HYDROGEN-BONDS ON THE BASIS OF THE CHARGE-DENSITY , 1995 .

[40]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[41]  T. George Electronic states of the XenHCl systems in gas and condensed phases , 1988 .

[42]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[43]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[44]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .