First‐principle investigation of magnetic coupling mechanism in hypothesized A‐site‐ordered perovskite YMn3Sc4O12

We have systematically investigated the electronic and magnetic properties of hypothesized A‐site‐ordered perovskite YMn3Sc4O12 using first‐principle calculation based on the density functional theory. Our calculated results predict that YMn3Sc4O12 is both thermodynamically and mechanically stable and its ground state is antiferromagnetic insulator. The Mn3+ is in the high‐spin state. More importantly, by comparison to YMn3Al4O12, we point out that the empty Sc 3d orbital provides the MnOScOMn superexchange interaction, which is similar to its isostructural perovskite CaCu3Ti4O12, and enhances the antiferromagnetic interaction between Mn ions. From these calculations, we can clearly see that the empty 3d orbital plays an important role to realize superexchange interaction. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011

[1]  O. Silva,et al.  Stabilization of α-SiAlONs using a rare-earth mixed oxide (RE2O3) as sintering additive , 2005 .

[2]  A. Agui,et al.  Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12. , 2010, Inorganic chemistry.

[3]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[4]  A. Agui,et al.  Various valence states of square-coordinated mn in a-site-ordered perovskites. , 2009, Journal of the American Chemical Society.

[5]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[6]  A. Authier,et al.  Physical properties of crystals , 2007 .

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[9]  M. Azuma,et al.  Intermetallic charge transfer in A-site-ordered double perovskite BiCu3Fe4O12. , 2009, Inorganic chemistry.

[10]  Xiaojuan Liu,et al.  Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles , 2007 .

[11]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[12]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[13]  T. Mizokawa,et al.  Metallic versus insulating behavior in the A -site ordered perovskite oxides A Cu3 Co4 O12 (A=Ca and Y) controlled by Mott and Zhang-Rice physics , 2009 .

[14]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[15]  O. Knop,et al.  Refinement of the crystal structure of scandium oxide , 1968 .

[16]  W. Hase Neutronographische Bestimmung der Kristallstrukturparameter von Dy2O3, Tm2O3 und α ‐Mn2O3 , 1963 .

[17]  Elisabeth Sjöstedt,et al.  Efficient linearization of the augmented plane-wave method , 2001 .

[18]  M. Azuma,et al.  Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite , 2009, Nature.

[19]  M. Azuma,et al.  Ferromagnetic cuprates CaCu3Ge4O12 and CaCu3Sn4O12 with A-site ordered perovskite structure , 2007 .

[20]  Ru‐Shi Liu,et al.  Crystal Structures and Peculiar Magnetic Properties of α- and γ-Al2O3 Powders , 1997 .

[21]  M. Croft,et al.  LARGE LOW-FIELD MAGNETORESISTANCE IN PEROVSKITE-TYPE CACU3MN4O12 WITHOUT DOUBLE EXCHANGE , 1999 .

[22]  V. Eyert,et al.  Intermediate-Valence Behavior in the Transition-Metal Oxide CaCu3Ru4O12 , 2009, 0909.4208.

[23]  Hongping Li,et al.  Ferromagnetic interaction between A-site Cu spins in A-site-ordered perovskites A ' Cu3Sn4O12 with A ' = Ca2+, Sr2+, Pb2+, and La3+ , 2010 .

[24]  M. Mizumaki,et al.  Orbital hybridization and magnetic coupling of the A-site Cu spins in CaCu3B4O12 (B = Ti, Ge, and Sn) perovskites. , 2009, Inorganic chemistry.

[25]  M. T. Casais,et al.  Enhanced magnetoresistance in the complex perovskite LaCu3Mn4O12 , 2003 .

[26]  M. Azuma,et al.  A perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet. , 2008, Angewandte Chemie.

[27]  Y. Shimakawa,et al.  Structural and Magnetic Properties of A-Site-Ordered Perovskites ACu3Sn4O12 with A = Ca2+, Sr2+, and Pb2+ , 2008 .

[28]  M. Azuma,et al.  Magnetoresistance and electronic structure of the half-metallic ferrimagnet BiCu3Mn4O12 , 2007 .

[29]  K. Schwarz,et al.  Solid state calculations using WIEN2k , 2003 .

[30]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Y. Shimakawa A-site-ordered perovskites with intriguing physical properties. , 2008, Inorganic chemistry.