First‐principle investigation of magnetic coupling mechanism in hypothesized A‐site‐ordered perovskite YMn3Sc4O12
暂无分享,去创建一个
Jian Meng | Xiaojuan Liu | Hongping Li | Shuhui Lv | Yijia Bai | Yanjie Xia | Hongping Li | Xiaojuan Liu | J. Meng | S. Lv | Yanjie Xia | Yijia Bai
[1] O. Silva,et al. Stabilization of α-SiAlONs using a rare-earth mixed oxide (RE2O3) as sintering additive , 2005 .
[2] A. Agui,et al. Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12. , 2010, Inorganic chemistry.
[3] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[4] A. Agui,et al. Various valence states of square-coordinated mn in a-site-ordered perovskites. , 2009, Journal of the American Chemical Society.
[5] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[6] A. Authier,et al. Physical properties of crystals , 2007 .
[7] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[8] Hafner,et al. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.
[9] M. Azuma,et al. Intermetallic charge transfer in A-site-ordered double perovskite BiCu3Fe4O12. , 2009, Inorganic chemistry.
[10] Xiaojuan Liu,et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles , 2007 .
[11] David J. Singh,et al. An alternative way of linearizing the augmented-plane-wave method , 2000 .
[12] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[13] T. Mizokawa,et al. Metallic versus insulating behavior in the A -site ordered perovskite oxides A Cu3 Co4 O12 (A=Ca and Y) controlled by Mott and Zhang-Rice physics , 2009 .
[14] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[15] O. Knop,et al. Refinement of the crystal structure of scandium oxide , 1968 .
[16] W. Hase. Neutronographische Bestimmung der Kristallstrukturparameter von Dy2O3, Tm2O3 und α ‐Mn2O3 , 1963 .
[17] Elisabeth Sjöstedt,et al. Efficient linearization of the augmented plane-wave method , 2001 .
[18] M. Azuma,et al. Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite , 2009, Nature.
[19] M. Azuma,et al. Ferromagnetic cuprates CaCu3Ge4O12 and CaCu3Sn4O12 with A-site ordered perovskite structure , 2007 .
[20] Ru‐Shi Liu,et al. Crystal Structures and Peculiar Magnetic Properties of α- and γ-Al2O3 Powders , 1997 .
[21] M. Croft,et al. LARGE LOW-FIELD MAGNETORESISTANCE IN PEROVSKITE-TYPE CACU3MN4O12 WITHOUT DOUBLE EXCHANGE , 1999 .
[22] V. Eyert,et al. Intermediate-Valence Behavior in the Transition-Metal Oxide CaCu3Ru4O12 , 2009, 0909.4208.
[23] Hongping Li,et al. Ferromagnetic interaction between A-site Cu spins in A-site-ordered perovskites A ' Cu3Sn4O12 with A ' = Ca2+, Sr2+, Pb2+, and La3+ , 2010 .
[24] M. Mizumaki,et al. Orbital hybridization and magnetic coupling of the A-site Cu spins in CaCu3B4O12 (B = Ti, Ge, and Sn) perovskites. , 2009, Inorganic chemistry.
[25] M. T. Casais,et al. Enhanced magnetoresistance in the complex perovskite LaCu3Mn4O12 , 2003 .
[26] M. Azuma,et al. A perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet. , 2008, Angewandte Chemie.
[27] Y. Shimakawa,et al. Structural and Magnetic Properties of A-Site-Ordered Perovskites ACu3Sn4O12 with A = Ca2+, Sr2+, and Pb2+ , 2008 .
[28] M. Azuma,et al. Magnetoresistance and electronic structure of the half-metallic ferrimagnet BiCu3Mn4O12 , 2007 .
[29] K. Schwarz,et al. Solid state calculations using WIEN2k , 2003 .
[30] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[31] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[32] Y. Shimakawa. A-site-ordered perovskites with intriguing physical properties. , 2008, Inorganic chemistry.