Empirical likelihood for a varying coefficient partially linear model with diverging number of parameters

The purpose of this paper is two-fold. First, for the estimation or inference about the parameters of interest in semiparametric models, the commonly used plug-in estimation for infinite-dimensional nuisance parameter creates non-negligible bias, and the least favorable curve or under-smoothing is popularly employed for bias reduction in the literature. To avoid such strong structure assumptions on the models and inconvenience of estimation implementation, for the diverging number of parameters in a varying coefficient partially linear model, we adopt a bias-corrected empirical likelihood (BCEL) in this paper. This method results in the distribution of the empirical likelihood ratio to be asymptotically tractable. It can then be directly applied to construct confidence region for the parameters of interest. Second, different from all existing methods that impose strong conditions to ensure consistency of estimation when diverging the number of the parameters goes to infinity as the sample size goes to infinity, we provide techniques to show that, other than the usual regularity conditions, the consistency holds under moment conditions alone on the covariates and error with a diverging rate being even faster than those in the literature. A simulation study is carried out to assess the performance of the proposed method and to compare it with the profile least squares method. A real dataset is analyzed for illustration.

[1]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[2]  Song Xi Chen,et al.  Empirical likelihood confidence intervals for nonparametric density estimation , 1996 .

[3]  Gang Li,et al.  EMPIRICAL LIKELIHOOD REGRESSION ANALYSIS FOR RIGHT CENSORED DATA , 2003 .

[4]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[5]  Jianqing Fan,et al.  Semilinear High-Dimensional Model for Normalization of Microarray Data , 2005 .

[6]  Qi Li,et al.  Efficient estimation of a semiparametric partially linear varying coefficient model , 2005, math/0504510.

[7]  Lixing Zhu,et al.  Empirical likelihood confidence regions of the parameters in a partially linear single-index model , 2005 .

[8]  Lixing Zhu,et al.  Empirical likelihood for single-index models , 2006 .

[9]  W. Wong,et al.  Profile Likelihood and Conditionally Parametric Models , 1992 .

[10]  Liang Peng,et al.  Effects of data dimension on empirical likelihood , 2009 .

[11]  W Y Zhang,et al.  Discussion on `Sure independence screening for ultra-high dimensional feature space' by Fan, J and Lv, J. , 2008 .

[12]  H. Robbins,et al.  Strong consistency of least squares estimates in multiple regression. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[14]  Lixing Zhu,et al.  Empirical likelihood confidence regions in a partially linear single‐index model , 2006 .

[15]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[16]  Clifford Lam,et al.  PROFILE-KERNEL LIKELIHOOD INFERENCE WITH DIVERGING NUMBER OF PARAMETERS. , 2008, Annals of statistics.

[17]  Peter Hall,et al.  Methodology and algorithms of empirical likelihood , 1990 .

[18]  David Ruppert,et al.  Local Estimating Equations , 1998 .

[19]  Lixing Zhu,et al.  Empirical Likelihood in Nonparametric and Semiparametric Models , 1991 .

[20]  Jianqing Fan,et al.  Profile likelihood inferences on semiparametric varying-coefficient partially linear models , 2005 .

[21]  Thomas J. DiCiccio,et al.  Empirical Likelihood is Bartlett-Correctable , 1991 .

[22]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[23]  Runze Li,et al.  Statistical Challenges with High Dimensionality: Feature Selection in Knowledge Discovery , 2006, math/0602133.

[24]  S. Portnoy Asymptotic Behavior of Likelihood Methods for Exponential Families when the Number of Parameters Tends to Infinity , 1988 .

[25]  Lixing Zhu,et al.  NONCONCAVE PENALIZED M-ESTIMATION WITH A DIVERGING NUMBER OF PARAMETERS , 2011 .

[26]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[27]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[28]  Yong Zhou,et al.  Empirical likelihood for semiparametric varying-coefficient partially linear regression models , 2006 .

[29]  S. Christian Albright,et al.  Data Analysis and Decision Making with Microsoft Excel (with CD-ROM, InfoTrac , and Decision Tools and Statistic Tools Suite) , 2005 .

[30]  Yingcun Xia,et al.  Efficient estimation for semivarying‐coefficient models , 2004 .

[31]  Gaorong Li,et al.  Generalized empirical likelihood inference in semiparametric regression model for longitudinal data , 2008 .

[32]  Gregory Piatetsky-Shapiro,et al.  High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality , 2000 .

[33]  Nils Lid Hjort,et al.  Extending the Scope of Empirical Likelihood , 2009, 0904.2949.

[34]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[35]  Qi Li,et al.  Semiparametric Smooth Coefficient Models , 2002 .

[36]  Jianqing Fan,et al.  Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.

[37]  Lixing Zhu,et al.  Empirical likelihood inference in partially linear single-index models for longitudinal data , 2010, J. Multivar. Anal..

[38]  Yingcun Xia,et al.  ON THE ESTIMATION AND TESTING OF FUNCTIONAL-COEFFICIENT LINEAR MODELS , 1999 .

[39]  Lixing Zhu,et al.  Empirical Likelihood for a Varying Coefficient Model With Longitudinal Data , 2007 .

[40]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .

[41]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .