Stability analysis and development of a class of fuzzy control systems

Abstract The paper presents a development method for fuzzy controllers, derived from a stability analysis method based on a linearized model of the controlled plant. The stability conditions are expressed by a set of indices that verify the character of the equilibrium point and its uniqueness, and also measure the relative degree of stability. The proposed development method is applicable to the control of a class of nonlinear plants of arbitrary order, with the right-hand term of the state equation restricted to being a continuous and partially differentiable function. For the sake of simplicity, the presentation is mainly dedicated to second-order systems. The application examples presented here deal with the control of two real-world processes, namely the development of fuzzy control systems intended for the position control of an electro-hydraulic servosystem, and for the speed control of an electrical driving system with a variable moment of inertia.

[1]  Javier Aracil,et al.  Stability indices for the global analysis of expert control systems , 1989, IEEE Trans. Syst. Man Cybern..

[2]  Stefan Preitl,et al.  Development of a quasi-PI fuzzy controller based on the principle of minimum guaranteed phase margin , 1999 .

[3]  Stefan Preitl,et al.  Fuzzy Control Algorithms Implementation for a Synchronous Generator Connected to a Power System , 1995 .

[4]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[5]  A. Makkonen,et al.  Autotuner for fuzzy controller-relay based approach , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[6]  Hansruedi Bühler Réglage par mode de glissement , 1986 .

[7]  Boris Lohmann,et al.  Order reduction and determination of dominant state variables of nonlinear systems , 1995 .

[8]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[9]  Byung Soo Moon,et al.  Equivalence between fuzzy logic controllers and PI controllers for single input systems , 1995 .

[10]  Sylvie Galichet,et al.  Fuzzy controllers: synthesis and equivalences , 1995, IEEE Trans. Fuzzy Syst..

[11]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[12]  Harro Kiendl,et al.  Verfahren zum Entwurf und Stabilitätsnachweis von Regelungssystemen mit Fuzzy-Reglern / Methods for the design and the proof of stability of control circuits with fuzzy controllers , 1993 .

[13]  Alessandro Astolfi,et al.  Stability study of a fuzzy controlled mobile robot , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  R. Böhm,et al.  Ein Ansatz zur Stabilitätsanalyse und Synthese von Fuzzy-Regelungen , 1993 .

[15]  K. Tang,et al.  Comparing fuzzy logic with classical controller designs , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Rolf Böhm,et al.  Stabilitätsanalyse von Fuzzy- Mehrgrößenregelungen mit Hilfe der Hyperstabilitätstheorie , 1995 .

[17]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .