Finite time practical stabilization of nonlinear detectable systems by uniting control

The stabilization problem for nonlinear dynamical systems under zero-state-detectability assumption or its analogues is considered. The proposed solution ensures finite time practical stabilization of the system and it is based on uniting local and global controllers for the system. The global controller provides boundedness of the system solutions and output convergence to zero, while local one ensures finite time convergence to a prescribed goal set inside the zero dynamics set. Computer simulation demonstrates potentiality of the proposed solution.

[1]  Alexander L. Fradkov,et al.  Stabilization of invariant sets for nonlinear non-affine systems , 2000, Autom..

[2]  Francesco Bullo,et al.  Stabilization of relative equilibria for underactuated systems on Riemannian manifolds , 2000, Autom..

[3]  João Pedro Hespanha,et al.  Postprints from CCDC Title Hysteresis-based switching algorithms for supervisory control of uncertain systems Permalink , 2002 .

[4]  Carlos Canudas-de-Wit,et al.  Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.

[5]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[6]  Alexander L. Fradkov Swinging control of nonlinear oscillations , 1996 .

[7]  L. Praly,et al.  Uniting local and global controllers , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[8]  Alexander L. Fradkov,et al.  Nonlinear and Adaptive Control of Complex Systems , 1999 .

[9]  Alexander L. Fradkov,et al.  Stabilization of invariant sets for nonlinear systems with applications to control of oscillations , 2001 .

[10]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[11]  Hiroshi Ito,et al.  Uniting local and global controllers for uncertain nonlinear systems: beyond global inverse optimality , 2002, Syst. Control. Lett..

[12]  Eduardo Sontag,et al.  Notions of input to output stability , 1999, Systems & Control Letters.

[13]  Eduardo D. Sontag,et al.  Lyapunov Characterizations of Input to Output Stability , 2000, SIAM J. Control. Optim..

[14]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[15]  Alessandro Astolfi,et al.  Robust stabilization of chained systems via hybrid control , 2003, IEEE Trans. Autom. Control..

[16]  Christophe Prieur Uniting Local and Global Controllers with Robustness to Vanishing Noise , 2001, Math. Control. Signals Syst..

[17]  Aristotle Arapostathis,et al.  Remarks on smooth feedback stabilization of nonlinear systems , 1988 .

[18]  A. Stephen Morse,et al.  Control Using Logic-Based Switching , 1997 .

[19]  Alexander L. Fradkov,et al.  VSS-version of energy-based control for swinging up a pendulum , 2001, Syst. Control. Lett..

[20]  Denis V. Efimov Microsoft Word - UNITING_GLOB_and_LOC_CONTR_ IFAC_final , 2005 .

[21]  Eduardo Sontag,et al.  Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .

[22]  Denis Efimov,et al.  UNIVERSAL FORMULA FOR OUTPUT ASYMPTOTIC STABILIZATION , 2002 .

[23]  Carlos Canudas-de-Wit,et al.  Virtual constraints: A tool for orbital stabilization of nonlinear systems - examples , 2004 .

[24]  Alexander L. Fradkov,et al.  Input-to- Output Stabilization of Nonlinear Systems via Backstepping , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[25]  Anton S. Shiriaev,et al.  The notion of V-detectability and stabilization of invariant sets of nonlinear systems☆ , 2000 .

[26]  Aristotle Arapostathis,et al.  Remarks on smooth feedback stabilization of nonlinear systems , 1986, 1986 American Control Conference.

[27]  Richard M. Murray,et al.  Nonlinear Rescaling of Control Laws with Application to Stabilization in the Presence of Magnitude Saturation , 1998 .