Metastable behavior of donors in CuGaSe2 under illumination

Several metastable effects have been observed in chalcopyrite solar cells. Recently, they have been related to the amphoteric behavior of the Se vacancy. We give an independent experimental evidence on this amphoteric behavior. By comparing charge carrier densities obtained from Hall effect measurements under illumination and in the dark, we conclude that illumination removes compensating donors.

[1]  H. Schock,et al.  The metastable changes of the trap spectra of CuInSe2‐based photovoltaic devices , 1996 .

[2]  Hole transport mechanisms in CuGaSe2 , 2005 .

[3]  U. Rau,et al.  Wide-Gap Chalcopyrites , 2006 .

[4]  A. Zunger,et al.  Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors , 2005, cond-mat/0503018.

[5]  A. Zunger,et al.  Metal-dimer atomic reconstruction leading to deep donor states of the anion vacancy in II-VI and chalcopyrite semiconductors. , 2004, Physical review letters.

[6]  J. Werner,et al.  High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells , 2007 .

[7]  H. Richter,et al.  Internal oxidation of vacancy agglomerates in Czochralski silicon wafers during high-temperature anneals , 1998 .

[8]  Marika Edoff,et al.  Metastabilities in the electrical characteristics of CIGS devices : Experimental results vs theoretical predictions , 2007 .

[9]  S. Nishiwaki,et al.  Self-compensation of intrinsic defects in the ternary semiconductor CuGaSe 2 , 2004 .

[10]  M. Ch. Lux-Steiner,et al.  Radiative recombination via intrinsic defects in CuxGaySe2 , 2001 .

[11]  N. Rega,et al.  Evaluation of copper organometallic sources for CuGaSe2 photovoltaic applications , 2003 .

[12]  A. Rockett,et al.  Hole transport and doping states in epitaxial CuIn1−xGaxSe2 , 1998 .

[13]  Alex Zunger,et al.  Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex , 2006 .

[14]  U. Rau,et al.  Composition dependence of defect energies and band alignments in the Cu(In1−xGax)(Se1−ySy)2 alloy system , 2002 .

[15]  H. Schock,et al.  Electronic properties of CuGaSe2-based heterojunction solar cells. Part II. Defect spectroscopy , 2000 .

[16]  S. Siebentritt,et al.  Reconciliation of luminescence and Hall measurements on the ternary semiconductor CuGaSe2 , 2005 .

[17]  S. Siebentritt Shallow Defects in the Wide Gap Chalcopyrite CuGaSe2 , 2006 .

[18]  Uwe Rau,et al.  Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges , 1999 .

[19]  W. Shafarman,et al.  Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling , 2004 .

[20]  Rommel Noufi,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state‐of‐the‐art ZnO/CdS/Cu(In1−xGax)Se2 solar cells , 2005 .