Asymptotically optimal shrinkage estimates for non-normal data

Motivated by several practical issues, we consider the problem of estimating the mean of a p-variate population (not necessarily normal) with unknown finite covariance. A quadratic loss function is used. We give a number of estimators (for the mean) with their loss functions admitting expansions to the order of p −1/2 as p→∞. These estimators contain Stein's [Inadmissibility of the usual estimator for the mean of a multivariate normal population, in Proceedings of the Third Berkeley Symposium in Mathematical Statistics and Probability, Vol. 1, J. Neyman, ed., University of California Press, Berkeley, 1956, pp. 197–206] estimate as a particular case and also contain ‘multiple shrinkage’ estimates improving on Stein's estimate. Finally, we perform a simulation study to compare the different estimates.

[1]  K. Giridhar,et al.  Biased estimation of Rician K factor , 2007, 2007 6th International Conference on Information, Communications & Signal Processing.

[2]  Yingbo Hua,et al.  Rank reduction and James-Stein estimation , 1999, IEEE Trans. Signal Process..

[3]  A. K. Md. Ehsanes Saleh,et al.  Theory of preliminary test and Stein-type estimation with applications , 2006 .

[4]  M. J. Wichura The coordinate-free approach to linear models , 2006 .

[5]  Maximizing Heritability of a Linear Combination of Traits , 1994, Psychological reports.

[6]  J. R. Wallis,et al.  Note on the applicability of the James-Stein estimator in regional hydrologic studies. , 1984 .

[7]  J. Vaurio,et al.  James-Stein estimators for failure rates and probabilities , 1992 .

[8]  Kurt Hoffmann,et al.  Stein estimation—A review , 2000 .

[9]  H. Vincent Poor,et al.  James-Stein state filtering algorithms , 1998, IEEE Trans. Signal Process..

[10]  Ewout W. Steyerberg,et al.  Application of Shrinkage Techniques in Logistic Regression Analysis: A Case Study , 2001 .

[11]  X. Cui,et al.  Improved statistical tests for differential gene expression by shrinking variance components estimates. , 2005, Biostatistics.

[12]  Pierre Massotte,et al.  Future production systems: Influence of self-organization on approaches to quality engineering , 2000 .

[13]  C.M.L. Dorman,et al.  Application of the James—Stein estimator to extreme wind speeds , 1982 .

[14]  A. P. D. Ponce de Leon,et al.  [Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes]. , 2007, Revista de saude publica.

[15]  S. E. Ahmed Shrinkage Estimation of Regression Coefficients From Censored Data With Multiple Observations , 2001 .

[16]  Cyril Riddell,et al.  A linear wavelet filter for parametric imaging with dynamic PET , 2003, IEEE Transactions on Medical Imaging.

[17]  K. Doksum,et al.  SHRINKAGE, PRETEST AND ABSOLUTE PENALTY ESTIMATORS IN PARTIALLY LINEAR MODELS , 2007 .

[18]  S. Kathman,et al.  Combining estimates from multiple early studies to obtain estimates of response: using shrinkage estimates to obtain estimates of response , 2007, Pharmaceutical statistics.

[19]  Saralees Nadarajah,et al.  Expansions for the risk of Stein type estimates for non-normal data , 2011 .

[20]  Restrict Estimates to the Possible Values , 1993 .

[21]  Jean Hausser,et al.  Entropy Inference and the James-Stein Estimator, with Application to Nonlinear Gene Association Networks , 2008, J. Mach. Learn. Res..

[22]  Marvin H. J. Gruber Improving Efficiency by Shrinkage: The James--Stein and Ridge Regression Estimators , 1998 .

[23]  M. Köhl,et al.  Empirische Bayes-Schätzer zur Datenanalyse in Forstinventuren , 1991, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[24]  J. C. van Houwelingen,et al.  Shrinkage and Penalized Likelihood as Methods to Improve Predictive Accuracy , 2001 .

[25]  J. Stock,et al.  A dynamic factor model framework for forecast combination , 1999 .

[26]  T. Kubokawa The Stein Phenomenon in Simultaneous Estimation: A Review , 1997 .

[27]  Shrinkage estimates based on orthogonal decomposition of the sample space , 1990 .

[28]  An Application of James-Stein Estimation to Survey Data , 1982 .

[29]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[30]  F. Eugene Yates,et al.  The national center for health statistics , 1973, Annals of Biomedical Engineering.

[31]  A comparison of quarterly earnings per share forecasts using James-Stein and unconditional least squares parameter estimators , 1989 .

[32]  Korbinian Strimmer,et al.  Entropy Inference and the James-Stein Estimator, with Application to Nonlinear Gene Association Networks , 2008, J. Mach. Learn. Res..

[33]  B. Mishra,et al.  Shrinkage-based similarity metric for cluster analysis of microarray data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A class of multiple shrinkage estimators , 1991 .