Penalty Alternating Direction Methods for Mixed-Integer Optimization: A New View on Feasibility Pumps

Feasibility pumps are highly effective primal heuristics for mixed-integer linear and nonlinear optimization. However, despite their success in practice there are only a few works considering their theoretical properties. We show that feasibility pumps can be seen as alternating direction methods applied to special reformulations of the original problem, inheriting the convergence theory of these methods. Moreover, we propose a novel penalty framework that encompasses this alternating direction method, which allows us to refrain from random perturbations that are applied in standard versions of feasibility pumps in case of failure. We present a convergence theory for the new penalty based alternating direction method and compare the new variant of the feasibility pump with existing versions in an extensive numerical study for mixed-integer linear and nonlinear problems.

[1]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[2]  Matteo Fischetti,et al.  Feasibility pump 2.0 , 2009, Math. Program. Comput..

[3]  Jeff T. Linderoth,et al.  Algorithms and Software for Convex Mixed Integer Nonlinear Programs , 2012 .

[4]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1987, Math. Program..

[5]  I. Nowak Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming , 2005 .

[6]  Timo Berthold Heuristic algorithms in global MINLP solvers , 2014 .

[7]  Andrew C. Eberhard,et al.  A New Approach to the Feasibility Pump in Mixed Integer Programming , 2012, SIAM J. Optim..

[8]  Andrea Lodi,et al.  Experiments with a Feasibility Pump Approach for Nonconvex MINLPs , 2010, SEA.

[9]  Richard E. Wendell,et al.  Minimization of a Non-Separable Objective Function Subject to Disjoint Constraints , 1976, Oper. Res..

[10]  Jonathan Eckstein,et al.  Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer programming , 2007, J. Heuristics.

[11]  Matteo Fischetti,et al.  A feasibility pump heuristic for general mixed-integer problems , 2007, Discret. Optim..

[12]  Kathrin Klamroth,et al.  Biconvex sets and optimization with biconvex functions: a survey and extensions , 2007, Math. Methods Oper. Res..

[13]  Timo Berthold,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Improving the Feasibility Pump Improving the Feasibility Pump , 2022 .

[14]  Matteo Fischetti,et al.  Boosting the feasibility pump , 2014, Mathematical Programming Computation.

[15]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[16]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[17]  Stefano Lucidi,et al.  A New Class of Functions for Measuring Solution Integrality in the Feasibility Pump Approach , 2013, SIAM J. Optim..

[18]  Jordi Castro,et al.  Using the analytic center in the feasibility pump , 2011, Oper. Res. Lett..

[19]  Stefano Lucidi,et al.  Feasibility Pump-like heuristics for mixed integer problems , 2010, Discret. Appl. Math..

[20]  Fred W. Glover,et al.  The feasibility pump , 2005, Math. Program..

[21]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[22]  Timo Berthold Primal Heuristics for Mixed Integer Programs , 2006 .

[23]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[24]  Michael R. Bussieck,et al.  MINLPLib - A Collection of Test Models for Mixed-Integer Nonlinear Programming , 2003, INFORMS J. Comput..

[25]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[26]  Gérard Cornuéjols,et al.  A Feasibility Pump for mixed integer nonlinear programs , 2009, Math. Program..

[27]  Björn Geißler,et al.  Solving power-constrained gas transportation problems using an MIP-based alternating direction method , 2015, Comput. Chem. Eng..

[28]  Pierre Bonami,et al.  Heuristics for convex mixed integer nonlinear programs , 2012, Comput. Optim. Appl..

[29]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[30]  Shaurya Sharma,et al.  Mixed-Integer Nonlinear Programming Heuristics Applied to a Shale Gas Production Optimization Problem , 2013 .

[31]  Andrea Lodi,et al.  A storm of feasibility pumps for nonconvex MINLP , 2012, Mathematical Programming.

[32]  Bjarne Grimstad,et al.  Towards an objective feasibility pump for convex MINLPs , 2015, Computational Optimization and Applications.

[33]  George F. List,et al.  General Algebraic Modeling System (GAMS) source code for port management , 2014 .

[34]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[35]  Claude Le Pape,et al.  Exploring relaxation induced neighborhoods to improve MIP solutions , 2005, Math. Program..

[36]  Nenad Mladenovic,et al.  Variable Neighbourhood Pump Heuristic for 0-1 Mixed Integer Programming Feasibility , 2010, Electron. Notes Discret. Math..