A Learning Algorithm for Boltzmann Machines

[1]  C. V. D. Malsburg,et al.  Frank Rosenblatt: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms , 1986 .

[2]  K. Binder Applications of the Monte Carlo Method in Statistical Physics , 2012 .

[3]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Allen Newell,et al.  Intellectual issues in the history of artificial intelligence , 1983 .

[5]  Geoffrey E. Hinton,et al.  Massively Parallel Architectures for AI: NETL, Thistle, and Boltzmann Machines , 1983, AAAI.

[6]  Paul Smolensky,et al.  Schema Selection and Stochastic Inference in Modular Environments , 1983, AAAI.

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[9]  David H. Ackley,et al.  The QBKG System: Generating Explanations From a Non-Discrete Knowledge Representation , 1982, AAAI.

[10]  Jerome A. Feldman,et al.  Connectionist Models and Their Properties , 1982, Cogn. Sci..

[11]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Scott E. Fahlman,et al.  The hashnet interconnection scheme , 1980 .

[13]  Roger Ratcliff,et al.  A Theory of Memory Retrieval. , 1978 .

[14]  Geoffrey E. Hinton Relaxation and its role in vision , 1977 .

[15]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[16]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[17]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[18]  S. Kullback Information Theory and Statistics , 1959 .

[19]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.