Computational Methods for Realistic Image Synthesis

Computational Methods for Realistic Image Synthesis Min-Zhi Shao Supervised by Dr. Norman I. Badler In this thesis, we investigate the computational methods for both diffuse and general reflections in realistic image synthesis and propose two new approaches: the overrelaxation solution and the Bernstein polynomial solution. One of the major concerns with the radiosity method is its expensive computing time and memory requirements. In this thesis, we analyze the convergence behavior of the progressive refinement radiosity method and propose two overrelaxation algorithms: the gathering and shooting solution and the positive overshooting solution. Wemodify the conventional shooting method to make the optimal use of the visibility information computed in each iteration. Based on a concise record of the history of the unshot light energy distribution, a solid convergence speed-up is achieved. Though a great effort has been made to extend the radiosity method to accommodate general non-diffuse reflection, the current algorithms are still quite limited to simple environment settings. In this thesis, we propose using the piecewise spherical Bernstein basis functions over a geodesic triangulation to represent the radiance function. The representation is intrinsic to the unit sphere, and can be efficiently stored, evaluated, and subdivided by the numerically stable de Casteljau algorithm. We demonstrate that the computation of other fundamental radiometric quantities such as vector irradiance and reflected radiance can be reduced to the integration of the piecewise spherical Bernstein basis functions. A novel geometric integration algorithm based on adaptive domain subdivision is presented for the Bernstein-Bézier polynomials over a geodesic triangle on the unit sphere.

[1]  N. Badler,et al.  Bernstein Polynomials for Radiative Transfer Computations , 1996 .

[2]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[3]  P. Heckbert Simulating Global Illumination Using Adaptive Meshing , 1991 .

[4]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[5]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[6]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[7]  Larry L. Schumaker,et al.  Bernstein-Bézier polynomials on spheres and sphere-like surfaces , 1996, Comput. Aided Geom. Des..

[8]  Dani Lischinski,et al.  Discontinuity meshing for accurate radiosity , 1992, IEEE Computer Graphics and Applications.

[9]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[10]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[11]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[12]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1988, SIGGRAPH.

[13]  Gary W. Meyer,et al.  Wavelength dependent reflectance functions , 1994, SIGGRAPH.

[14]  Kenneth E. Torrance,et al.  The zonal method for calculating light intensities in the presence of a participating medium , 1987, SIGGRAPH.

[15]  Donald P. Greenberg,et al.  An experimental evaluation of computer graphics imagery , 1986, TOGS.

[16]  Harold R. Zatz Galerkin radiosity: a higher order solution method for global illumination , 1993, SIGGRAPH.

[17]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[18]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[19]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[20]  James Arvo,et al.  Applications of irradiance tensors to the simulation of non-Lambertian phenomena , 1995, SIGGRAPH.

[21]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[22]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[23]  Ron Goldman,et al.  Subdivision algorithms for Bézier triangles , 1983 .

[24]  P. Hanrahan,et al.  Wavelet Methods for Radiance Computations , 1995 .

[25]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[26]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[27]  Rida T. Farouki,et al.  Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..

[28]  Donald P. Greenberg,et al.  An Efficient Radiosity Approach for Realistic Image Synthesis , 1986, IEEE Computer Graphics and Applications.

[29]  Donald P. Greenberg,et al.  The hemi-cube: a radiosity solution for complex environments , 1985, SIGGRAPH.

[30]  H. Gouraud Continuous Shading of Curved Surfaces , 1971, IEEE Transactions on Computers.

[31]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[32]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[33]  Daniel R. Baum,et al.  Improving radiosity solutions through the use of analytically determined form-factors , 1989, SIGGRAPH.

[34]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[35]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[36]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[37]  John R. Wallace,et al.  A Ray tracing algorithm for progressive radiosity , 1989, SIGGRAPH '89.

[38]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[39]  Nelson L. Max,et al.  Bidirectional reflection functions from surface bump maps , 1987, SIGGRAPH.

[40]  Donald P. Greenberg,et al.  A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods , 1987, SIGGRAPH.

[41]  Qunsheng Peng,et al.  A new radiosity approach by procedural refinements for realistic image sythesis , 1988, SIGGRAPH.

[42]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[43]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[44]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[45]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[46]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[47]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[48]  Pat Hanrahan,et al.  A hierarchical illumination algorithm for surfaces with glossy reflection , 1993, SIGGRAPH.

[49]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[50]  J. L. Brown,et al.  Problems with defining barycentric coordinates for the sphere , 1992 .

[51]  G. R. Cowper,et al.  Gaussian quadrature formulas for triangles , 1973 .

[52]  James Arvo,et al.  The irradiance Jacobian for partially occluded polyhedral sources , 1994, SIGGRAPH.

[53]  T. Teichmann,et al.  Radiative Transfer on Discrete Spaces , 1966 .

[54]  Larry L. Schumaker,et al.  Fitting scattered data on sphere-like surfaces using spherical splines , 1996 .