Luminous Supersoft X-Ray Sources

We discuss possible evolution channels that lead to the formation of luminous supersoft X-ray sources, subclasses of which may be progenitors of type Ia supernovae. We carry out full evolution calculations from the zero-age main sequence to the supersoft source. A novel feature of our calculations is the inclusion of thermohaline mixing after mass transfer during binary evolution. The main effect of this is to produce secondaries of non-solar composition. Candidate initial progenitors are intermediate-mass donors of about 7 Mwith companions in the range 1.5−3.0 M� . We concentrate on early case-C evolution, which means that the primary fills its Roche lobe when it ascends the Early Asymptotic Giant Branch while its core is highly evolved and massive enough to form a CO white dwarf. A crucial role, established by observations in this part of HR diagram, is played by mass loss in winds and we treat winds with a new approach. Since common-envelope evolution (CE) is generally invoked to explain the formation of close binaries with one or two degenerate components, we assume that the progenitors undergo severe mass and angular momentum loss through such a phase. We further study how the configurations of the post- CE systems, composed of a massive white dwarf and a 1.5−3.0 Mcompanion, depend on the parameters of CE-evolution and mass-loss rates in various phases of evolution. Under these general assumptions a new path for the formation of SSSs is found which differs from that of the, usually assumed, solar composition donors. Our results may explain supersoft systems with enhanced helium abundances such as U Sco and very luminous extragalactic supersoft sources such as CAL 83 in the LMC and possibly the CHANDRA source (N1) in M 81.

[1]  E. Sion Evolutionary Sequences of Very Hot, Low Mass, Accreting White Dwarfs with Application to Symbiotic Variables , 1994 .

[2]  A. Cowley,et al.  THE X-RAY ECLIPSE OF THE LMC BINARY CAL 87 , 1993 .

[3]  D. Morgan Symbiotic stars in the Magellanic Clouds. , 1992 .

[4]  I. Iben,et al.  Diffusion and Mixing in Accreting White Dwarfs , 1992 .

[5]  J. Truran,et al.  A Model for the Galactic Population of Binary Supersoft X-Ray Sources , 1996 .

[6]  David J. Helfand,et al.  The detection of X-rays from the hot interstellar medium of the Large Magellanic Cloud , 1991 .

[7]  A. Tornambe',et al.  He stars and He-accreting CO white dwarfs , 1991 .

[8]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[9]  H. Ögelman,et al.  An Update on the X-Ray Observations of Classical Novae , 1995 .

[10]  M. Livio Topics in the Theory of Cataclysmic Variables and X-Ray Binaries , 1994 .

[11]  G. Hasinger,et al.  X-ray survey of the Large Magellanic Cloud by ROSAT , 1991, Nature.

[12]  The Single-Degenerate Scenario for Type Ia Supernovae in Cosmic Perspective , 1995, astro-ph/9511138.

[13]  P. Kahabka Recurrent supersoft x-ray sources , 1995 .

[14]  S. Rappaport,et al.  The derived population of luminous supersoft X-ray sources , 1994 .

[15]  S. Anderson,et al.  Hubble Space Telescope Imaging of Bright Galactic X-Ray Binaries in Crowded Fields , 1996, astro-ph/9608015.

[16]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[17]  Bohdan Paczynski,et al.  Evolutionary Processes in Close Binary Systems , 1971 .

[18]  J. Najita,et al.  Mass loss from rapidly rotating magnetic protostars , 1988 .

[19]  M. Fujimoto A theory of hydrogen shell flashes on accreting white dwarfs. I - Their progress and the expansion of the envelope. II - The stable shell burning and the recurrence period of shell flashes , 1982 .

[20]  Qingde Wang,et al.  A comprehensive X-ray study of the Small Magellanic Cloud , 1992 .

[21]  T. Ake,et al.  The early ultraviolet spectral evolution of Nova Cygni 1992 , 1993 .

[22]  W. Kundt Neutron stars and their birth events , 1990 .

[23]  R. Taam,et al.  Double core evolution. I. A 16 M/sub sun/ star with a 1 M/sub sun/ neutron-star companion , 1978 .

[24]  A. V. Tutukov,et al.  Helium-accreting degenerate dwarfs as presupernovae and scenarios for the ultrasoft x-ray sources , 1994 .

[25]  M. Livio,et al.  A Model for the Galactic Population of Symbiotic Stars with White Dwarf Accretors , 1995 .

[26]  P. Giommi,et al.  RX J0045.4+4154: A Recurrent Supersoft X-Ray Transient in M31 , 1995 .

[27]  Izumi Hachisu,et al.  A New Model for Progenitor Systems of Type Ia Supernovae , 1996 .

[28]  H. Ögelman,et al.  Detection of supersoft X-ray emission from GQ Muscae nine years after a nova outburst , 1993, Nature.

[29]  George Sonneborn,et al.  The early bolometric evolution of Nova Cygni 1992 , 1994 .

[30]  Ken'ichi Nomoto,et al.  Accreting white dwarf models for CAL 83, CAL 87 and other ultrasoft X-ray sources in the LMC , 1992 .

[31]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[32]  Eli Livne,et al.  Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae , 1990 .

[33]  R. Di Stefano,et al.  Formation and evolution of luminous supersoft X-ray sources , 1994 .

[34]  Sumner Starrfield,et al.  ROSAT X-ray observations of nova V1974 Cygni: The rise and fall of the brightest supersoft X-ray source , 1996 .

[35]  M. Livio,et al.  A Model for the Galactic Population of Supersoft X-ray Sources , 1996 .

[36]  A. Cowley Evidence for Black Holes in Stellar Binary Systems , 1992 .

[37]  P. Ruiz-Lapuente,et al.  Type Ia Supernova Scenarios and the Hubble Sequence , 1995, astro-ph/9505090.

[38]  D. J. Helfand,et al.  A soft X-ray study of the Large Magellanic Cloud , 1981 .

[39]  J. Truran,et al.  CNO abundances and hydrodynamic models of the nova outburst. III - 0.5 solar mass models with enhanced carbon, oxygen, and nitrogen , 1974 .

[40]  S. Kenyon,et al.  On the nova-like eruptions of symbiotic binaries , 1992 .

[41]  B. Warner,et al.  Cape Workshop on Magnetic Cataclysmic Variables, held in Cape Town, 23-27 January 1995 , 1995 .

[42]  E. Ostriker,et al.  Magnetocentrifugally Driven Flows from Young Stars and Disks. IV. The Accretion Funnel and Dead Zone , 1995 .

[43]  M. Camenzind,et al.  Stability of current-carrying jets. , 1992 .

[44]  D. Crampton,et al.  The Large Magellanic Cloud Supersoft X-Ray Binary RX J0513.9-6951 , 1995, astro-ph/9507029.

[45]  S. Kenyon The Symbiotic Stars by S. J. Kenyon , 1986 .

[46]  J. MacDonald CNO abundances and the strengths of nova outbursts and hydrogen flashes on accreting white dwarfs. , 1983 .

[47]  J. Steiner,et al.  On the magnetic nature of GQ MUSCAE , 1994 .

[48]  Mariko Kato,et al.  Optically thick winds and nova outbursts , 1994 .

[49]  Joachim Krautter,et al.  The nebular phase of Nova GQ Muscae 1983 - Evolution of the ionization of the optical spectrum , 1989 .

[50]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[51]  John I. Castor,et al.  Radiation-driven winds in Of stars. , 1975 .

[52]  D. Crampton,et al.  Detection, identification, and observed properties of Large Magellanic Cloud supersoft X-ray sources , 1993 .

[53]  K. Mukai,et al.  CAL 83: a 1-day period low-mass X-ray binary in the LMC , 1988 .

[54]  R. Malina,et al.  Ionization nebulae surrounding supersoft X-ray sources , 1994 .

[55]  I. Iben Hot accreting white dwarfs in the quasi-static approximation , 1982 .

[56]  A. Messiah Quantum Mechanics , 1961 .

[57]  G. Hasinger,et al.  ROSAT observations of X-ray sources in globular clusters , 1993 .

[58]  W. Arnett,et al.  A possible model of supernovae: Detonation of12C , 1969 .

[59]  H. Ögelman,et al.  The soft X-ray turnoff of Nova Muscae 1983 , 1995 .

[60]  U. Munari Symbiotic stars as precursors of the type Ia supernovae , 1992 .

[61]  B. Paczyński,et al.  Hydrogen shell flashes in a white dwarf with mass accretion , 1978 .

[62]  D. Crampton,et al.  CAL 87: an Eclipsing Black Hole Binary? , 1990 .

[63]  E.P.J. van den Heuvel,et al.  Compact stars in binaries , 1996 .

[64]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[65]  K. Nomoto,et al.  Accretion-Induced Collapse of White Dwarfs , 1987 .

[66]  M. Hamuy,et al.  Recent observations of nova GQ Mus 1983 , 1995 .

[67]  E. Heuvel Interacting binaries: topics in close binary evolution. , 1994 .

[68]  David Branch,et al.  IN SEARCH OF THE PROGENITORS OF TYPE IA SUPERNOVAE , 1995 .

[69]  R. Sienkiewicz Stability of white dwarfs undergoing spherically symmetric steady-state accretion , 1980 .

[70]  L. Macri,et al.  Ionization Nebulae Surrounding CAL 83 and Other Supersoft X-ray Sources , 1995 .

[71]  M. Livio,et al.  The Nature of the Supersoft X-Ray Source RX J0513-69 , 1996, astro-ph/9605090.

[72]  J. Heise,et al.  Are Supersoft X-ray Sources Consistent with White Dwarfs? , 1996 .

[73]  Mario Livio,et al.  Cataclysmic Variables and Related Objects , 1983 .

[74]  M. Fujimoto A Theory of Hydrogen Shell Flashes on Accreting White Dwarfs - Part Two - the Stable Shell Burning and the Recurrence Period of Shell Flashes , 1982 .

[75]  E. Sion,et al.  Hydrogen shell flashes in massive accreting white dwarfs , 1979 .

[76]  J. Truran,et al.  Recurrent novae as a consequence of the accretion of solar material onto a 1. 38 M/sub sun/ white dwarf , 1985 .

[77]  J. Steiner,et al.  The Photometric Period of Nova MUSCAE 1983 , 1989 .

[78]  Qingde Wang N67 as an X-ray bright planetary nebula in the Small Magellanic Cloud , 1991 .

[79]  D. Prialnik,et al.  An extended grid of multicycle nova evolution models , 1995 .

[80]  James MacDonald Classical Nova Evolution: Clues from Soft X-ray Emission , 1996 .

[81]  Melanie Mitchell,et al.  X-ray Survey of the Small Magellanic Cloud , 1981 .

[82]  D. Prialnik The Evolution of a Classical Nova Model through a Complete Cycle , 1986 .

[83]  Alexander V. Tutukov,et al.  On the Evolution of Symbiotic Stars and Other Binaries with Accreting Degenerate Dwarfs , 1996 .