Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution.

The rational construction of covalent or noncovalent organic two-dimensional nanosheets is a fascinating target because of their promising applications in electronics, membrane technology, catalysis, sensing, and energy technologies. Herein, a large-area (square millimeters) and free-standing 2D supramolecular polymer (2DSP) single-layer sheet (0.7-0.9 nm in thickness), comprising triphenylene-fused nickel bis(dithiolene) complexes has been readily prepared by using the Langmuir-Blodgett method. Such 2DSPs exhibit excellent electrocatalytic activities for hydrogen generation from water with a Tafel slope of 80.5 mV decade(-1) and an overpotential of 333 mV at 10 mA cm(-2) , which are superior to that of recently reported carbon nanotube supported molecular catalysts and heteroatom-doped graphene catalysts. This work is promising for the development of novel free-standing organic 2D materials for energy technologies.

[1]  Qian Liu,et al.  A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet , 2015, Nature Communications.

[2]  Dennis Sheberla,et al.  Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. , 2015, Angewandte Chemie.

[3]  Daniel J Murray,et al.  Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. , 2015, Journal of the American Chemical Society.

[4]  T. Fujita,et al.  High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. , 2015, Angewandte Chemie.

[5]  Patrick L. Holland,et al.  Nickel Complexes for Robust Light-Driven and Electrocatalytic Hydrogen Production from Water , 2015 .

[6]  M. Mecklenburg,et al.  Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. , 2015, Journal of the American Chemical Society.

[7]  Xiaodong Zhuang,et al.  Two‐Dimensional Soft Nanomaterials: A Fascinating World of Materials , 2015, Advanced materials.

[8]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[9]  M. Wörle,et al.  Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. , 2014, Nature chemistry.

[10]  B. T. King,et al.  A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. , 2014, Nature chemistry.

[11]  Yao Zheng,et al.  Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution , 2014, ACS nano.

[12]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[13]  Xiaoxi Huang,et al.  Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. , 2014, Angewandte Chemie.

[14]  P. Ceroni,et al.  Synthesis of two-dimensional analogues of copolymers by site-to-site transmetalation of organometallic monolayer sheets. , 2014, Journal of the American Chemical Society.

[15]  Zhengtao Xu,et al.  An electroactive porous network from covalent metal-dithiolene links. , 2014, Chemical communications.

[16]  R. Banerjee,et al.  Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. , 2013, Journal of the American Chemical Society.

[17]  David A. Hanifi,et al.  Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water. , 2013, Journal of the American Chemical Society.

[18]  X. Lou,et al.  Defect‐Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution , 2013, Advanced materials.

[19]  William R. Dichtel,et al.  Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. , 2013, Journal of the American Chemical Society.

[20]  B. T. King,et al.  A two-dimensional polymer from the anthracene dimer and triptycene motifs. , 2013, Journal of the American Chemical Society.

[21]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[22]  William R. Dichtel,et al.  Rationally synthesized two-dimensional polymers. , 2013, Nature chemistry.

[23]  H. Butt,et al.  Supramolecular thiophene nanosheets. , 2013, Angewandte Chemie.

[24]  C. Park,et al.  Free-standing, single-monomer-thick two-dimensional polymers through covalent self-assembly in solution. , 2013, Journal of the American Chemical Society.

[25]  Mariko Miyachi,et al.  π-Conjugated nickel bis(dithiolene) complex nanosheet. , 2013, Journal of the American Chemical Society.

[26]  Bicai Pan,et al.  Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. , 2013, Journal of the American Chemical Society.

[27]  G. Eda,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature materials.

[28]  M. Matheron,et al.  Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H₂ evolution under fully aqueous conditions. , 2013, Nature chemistry.

[29]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[30]  Klaus Müllen,et al.  Die chemische Synthese von Nanographen, Graphen‐Nanobändern und Graphen‐Schichten , 2012 .

[31]  K. Müllen,et al.  From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. , 2012, Angewandte Chemie.

[32]  Patrick L. Holland,et al.  Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions , 2012, Proceedings of the National Academy of Sciences.

[33]  B. T. King,et al.  A two-dimensional polymer prepared by organic synthesis. , 2012, Nature chemistry.

[34]  Xinchen Wang,et al.  Polymeres graphitisches Kohlenstoffnitrid als heterogener Organokatalysator: von der Photochemie über die Vielzweckkatalyse hin zur nachhaltigen Chemie , 2012 .

[35]  Yong Wang,et al.  Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. , 2012, Angewandte Chemie.

[36]  A. Stemmer,et al.  Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. , 2011, Angewandte Chemie.

[37]  Qiang Xu,et al.  Top-down fabrication of crystalline metal-organic framework nanosheets. , 2011, Chemical communications.

[38]  J. Fierro,et al.  Delamination of layered covalent organic frameworks. , 2011, Small.

[39]  Julio Gómez-Herrero,et al.  Single layers of a multifunctional laminar Cu(I,II) coordination polymer. , 2010, Chemical communications.

[40]  P. D. Tran,et al.  From Hydrogenases to Noble Metal–Free Catalytic Nanomaterials for H2 Production and Uptake , 2009, Science.

[41]  Eunji Lee,et al.  Reversible scrolling of two-dimensional sheets from the self-assembly of laterally grafted amphiphilic rods. , 2009, Angewandte Chemie.

[42]  A. Schlüter,et al.  Zweidimensionale Polymere: nur ein Traum von Synthetikern? , 2009 .

[43]  J. Sakamoto,et al.  Two-dimensional polymers: just a dream of synthetic chemists? , 2009, Angewandte Chemie.

[44]  David M. Cwiertny,et al.  Adsorption of sulfur dioxide on hematite and goethite particle surfaces. , 2007, Physical chemistry chemical physics : PCCP.

[45]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[46]  P. Schuhmacher,et al.  Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal , 1994, Nature.

[47]  D. Sellmann,et al.  Transition-metal complexes with sulfur ligands. 62. Hydrogen evolution upon reaction of protons with sulfur-coordinated iron(II) complexes. Investigation of the proton, hydrogen and hydride interactions with iron 1,2-benzenedithiolate complexes , 1991 .