Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties

[1]  D. Raabe,et al.  Basal and non-basal dislocation slip in Mg–Y , 2013 .

[2]  D. Raabe,et al.  Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg–Y alloys , 2013 .

[3]  Dierk Raabe,et al.  Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, , 2013 .

[4]  J. Schneider,et al.  Elastic properties of face-centred cubic Fe-Mn-C studied by nanoindentation and ab initio calculations , 2012 .

[5]  D. Raabe,et al.  The relation between ductility and stacking fault energies in Mg and Mg–Y alloys , 2012 .

[6]  G. Quan,et al.  Effect of Ti on the Mechanical Properties and Corrosion of Cast AZ91 Magnesium Alloy , 2012 .

[7]  X. Li,et al.  Sheet texture modification in magnesium-based alloys by selective rare earth alloying , 2011 .

[8]  S. Zaefferer,et al.  On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys , 2011 .

[9]  K. Kainer,et al.  Effect of rare earth elements on the microstructure and texture development in magnesium-manganese alloys during extrusion , 2010 .

[10]  K. Kainer,et al.  Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets , 2010 .

[11]  S. Yi,et al.  Microstructural evolution during the annealing of an extruded AZ31 magnesium alloy , 2010 .

[12]  Engineering,et al.  First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties , 2010, 1007.2585.

[13]  N. Stanford Micro-alloying Mg with Y, Ce, Gd and La for texture modification—A comparative study , 2010 .

[14]  S. Zaefferer,et al.  Improvement of Magnesium Sheet Formability by Alloying Addition of Rare Earth Elements , 2010 .

[15]  A. Dick,et al.  The Effect of Disorder on the Concentration‐Dependence of Stacking Fault Energies in Fe1‐xMnx – a First Principles Study , 2009 .

[16]  K. P. Boyle,et al.  Elastic Properties, Thermal Expansion Coefficients, and Electronic Structures of Mg and Mg-Based Alloys , 2009 .

[17]  K. Hono,et al.  Precipitation-hardenable Mg–2.4Zn–0.1Ag–0.1Ca–0.16Zr (at.%) wrought magnesium alloy , 2009 .

[18]  D. Raabe,et al.  Using ab initio calculations in designing bcc Mg–Li alloys for ultra-lightweight applications , 2009 .

[19]  M. Barnett,et al.  The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility , 2008 .

[20]  M. Mabuchi,et al.  Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt%(0.035 at%)Ce , 2008 .

[21]  J. Robson,et al.  Review on Research and Development of Magnesium Alloys , 2008 .

[22]  M. Barnett,et al.  Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys , 2008 .

[23]  Fu-chi Wang,et al.  Plastic Deformation Mechanisms of AZ31 Magnesium Alloy under High Strain Rate Compression , 2008 .

[24]  Do hyung Kim,et al.  Effect of icosahedral phase particles on the texture evolution in Mg–Zn–Y alloys , 2008 .

[25]  A. Luo,et al.  Influence of cerium on the texture and ductility of magnesium extrusions , 2008 .

[26]  D. Letzig,et al.  The influence of calcium and cerium mischmetal on the microstructural evolution of Mg–3Al–1Zn during extrusion and resulting mechanical properties , 2008 .

[27]  C. H. Cáceres,et al.  Solid-solution hardening and softening in Mg-Zn alloys , 2008 .

[28]  M. Mabuchi,et al.  Compressive deformation behavior at room temperature – 773 K in Mg–0.2 mass%(0.035at.%)Ce alloy , 2008 .

[29]  C. H. Cáceres,et al.  Solute and Temperature Effects on the Strain Hardening Behaviour of Mg-Zn Solid Solutions , 2007 .

[30]  D. Raabe,et al.  Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: Theory and experiments , 2007 .

[31]  S. Agnew,et al.  The texture and anisotropy of magnesium–zinc–rare earth alloy sheets , 2007 .

[32]  C. Tomé,et al.  Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction , 2006 .

[33]  Börje Johansson,et al.  Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory , 2006 .

[34]  J. Bünzli Benefiting from the unique properties of lanthanide ions. , 2006, Accounts of chemical research.

[35]  Matthew Barnett,et al.  Deformation microstructures and textures of some cold rolled Mg alloys , 2004 .

[36]  K. Kainer,et al.  Influence of Rolling Conditions on the Microstructure and Mechanical Properties of Magnesium Sheet AZ31 , 2003 .

[37]  K. Maruyama,et al.  The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys , 2003 .

[38]  C. H. Cáceres,et al.  The strength of concentrated Mg-Zn solid solutions , 2002 .

[39]  Sean R. Agnew,et al.  Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility , 2002 .

[40]  S. Agnew,et al.  Transmission electron microscopy investigation of dislocations in Mg and α-solid solution Mg-Li alloys , 2002 .

[41]  C. Tomé,et al.  Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y , 2001 .

[42]  B. Mordike,et al.  Magnesium: Properties — applications — potential , 2001 .

[43]  H. Tonda,et al.  Non-Basal Slips in Magnesium and Magnesium-Lithium Alloy Single Crystals , 2000 .

[44]  A. K. Dahle,et al.  The role of solute in grain refinement of magnesium , 2000 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[48]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[49]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[50]  W. V. Haeringen,et al.  Stacking-fault energies in semiconductors from first-principles calculations , 1987 .

[51]  E. Teghtsoonian,et al.  Solid solution strengthening of magnesium single crystals—I alloying behaviour in basal slip , 1969 .

[52]  E. Teghtsoonian,et al.  Solid solution strengthening of magnesium single crystals—ii the effect of solute on the ease of prismatic slip , 1969 .

[53]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[54]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[55]  R. Fleischer Rapid Solution Hardening, Dislocation Mobility, and the Flow Stress of Crystals , 1962 .

[56]  R. Fleischer,et al.  Solution hardening by tetragonal dist ortions: Application to irradiation hardening in F.C.C. crystals , 1962 .

[57]  Günter Wassermann,et al.  Texturen metallischer Werkstoffe , 1962 .

[58]  L. Bragg The strength of metals , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.